www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: maxiumum
Status: (Frage) beantwortet Status 
Datum: 16:56 Fr 18.02.2005
Autor: franciska

Wenn ich die funktion f(x) = x³-2ax²+a²x-2a² habe ich muss sagen auf welcher kurve das maxima liegt muss ich doch zuerst die ableitung gleich null setzten. da kommt dann raus:
x1: a
x2: 1/3a

und wenn ich dann die dazugehörigen y-werte ausrechnen will kommt bei mir raus: (a/-2a²) und (1/3a/ 4/27a³-32a²) und des kann doch irgendwie nicht stimmen oder?

und um die kurve rauszubekommen muss ich doch jetzt das a von den x werten ausrechnen und dann ich y einsetzen...aber irgendwie geht des alles bei mir...hab ich mich irgendwo verrechnet???

        
Bezug
Kurvendiskussion: Bedingung für Maximum
Status: (Antwort) fertig Status 
Datum: 17:08 Fr 18.02.2005
Autor: kuroiya

Hallo Franziska

Es stimmt, dass du die erste Ableitung = 0 setzen musst, wenn du die Extremstellen herausfinden willst.
Es ist jedoch weiter erforderlich, die zweite Ableitung zu bilden, wenn du wissen willst, ob du nun ein Maximum oder ein Minimum gefunden hast.

Die Extremalstellen [mm] x_{1}, x_{2} [/mm] hast du richtig berechnet. Nun musst du sie in die zweite Ableitung einsetzen (z.B. f''(a) =...) Es gilt:

Ist f''(x)>0, dann liegt ein lokales Minimum vor
Ist f''(x)<0, dann liegt ein lokales Maximum vor
Ist f''(x)=0, dann ist es kein lokales Extremum, sondern ein Sattelpunkt

Wenn du nun also herausgefunden hast, musst du, wie du es auch vorgeschlagen hast, die Extremstelle in f(x) einsetzen, um den y-Wert zu erhalten.

Noch was zum a: so wie ich das sehe, ist a ein Parameter, du musst also nicht berechnen, was a ist.

Bezug
        
Bezug
Kurvendiskussion: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Sa 19.02.2005
Autor: Zwerglein

Hi, franciska,

wenn es nur um die Ortskurve der Maxima (übrigens: Plural von Maximum!) geht, brauchst Du bloß zu betrachten:
[mm] x=\bruch{1}{3}a [/mm]
[mm] y=\bruch{4}{27}a^{3} [/mm] - [mm] 2a^{2} [/mm] (da hast Du Dich vermutlich vertippt?!?)

Dann löst Du die erste Gleichung nach a auf: a=3x
und setzt in die 2. Gleichung ein:
y= [mm] \bruch{4}{27}(3x)^{3} [/mm] - [mm] 2*(3x)^{2} [/mm] = [mm] 4x^{3}-18x^{2} [/mm]

Soweit OK?

mfG!
Zwerglein
  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de