www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Rückfragen / Ansatz
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:31 Di 06.10.2009
Autor: DerRicker

Aufgabe
Gegeben ist die Funktion f(x) = (x+9)/(4x+16).

a) Gib den maximal möglichen Definitionsbereich an!
b) Berechne lim x--> +oo über f(x)!
c) Für welche x-Werte gilt |f(x)-a| < [mm] \varepsilon [/mm] mit einem beliebigen  [mm] \varepsilon> [/mm] 0? Wie groß muss ein Wert Xo mindestens gewählt werden, wenn  [mm] \varepsilon= [/mm] 1/600?
d) Untersuche das Verhalten der Funktion in der Umgebung der Definitionslücke!  

Hallo,


ich werde einfach mal die einzelnen Teilaufgaben durchgehen:

a) Ist ja an sich einfach, D= R \ {-4}

b) Dieser Grenzwert müsste ja 0,25 sein, wenn mich nicht alles täuscht, ist ja auch noch machbar.

c) Hier habe ich ehrlich gesagt absolut keine Ahnung. Ich habe so eine Aufgabenstellung noch nie gesehen, und mir ist auch nicht so eindeutig ersichtlich, was genau hier gesucht ist, geschweige denn welchen Ansatz ich verwenden muss.

d) Wenn man sich den Graf anschaut, sieht man ja, dass er im Bereich von -4 gegen +oo bzw. -oo geht. Aber wie kann ich das rechnerisch beweisen?


So, das wären erstmal meine Fragen/Probleme. Wäre sehr nett wenn mir jemand bei c) und d) weiterhelfen könnte, Dankeschön schonmal im Voraus :).


Rick

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Di 06.10.2009
Autor: MathePower

Hallo DerRicker,


[willkommenmr]


> Gegeben ist die Funktion f(x) = (x+9)/(4x+16).
>  
> a) Gib den maximal möglichen Definitionsbereich an!
>  b) Berechne lim x--> +oo über f(x)!

>  c) Für welche x-Werte gilt |f(x)-a| < [mm]\varepsilon[/mm] mit
> einem beliebigen  [mm]\varepsilon>[/mm] 0? Wie groß muss ein Wert
> Xo mindestens gewählt werden, wenn  [mm]\varepsilon=[/mm] 1/600?
>  d) Untersuche das Verhalten der Funktion in der Umgebung
> der Definitionslücke!  
> Hallo,
>  
>
> ich werde einfach mal die einzelnen Teilaufgaben
> durchgehen:
>  
> a) Ist ja an sich einfach, D= R \ {-4}


[ok]


>  
> b) Dieser Grenzwert müsste ja 0,25 sein, wenn mich nicht
> alles täuscht, ist ja auch noch machbar.


Der Grenzwert stimmt. [ok]

Jetzt mußt Du das nur noch beweisen.


>  
> c) Hier habe ich ehrlich gesagt absolut keine Ahnung. Ich
> habe so eine Aufgabenstellung noch nie gesehen, und mir ist
> auch nicht so eindeutig ersichtlich, was genau hier gesucht
> ist, geschweige denn welchen Ansatz ich verwenden muss.


Das Stichwort hier heißt, wie auch bei b)  Polynomdivision.


Aus dieser Teilaufgabe geht nicht hervor, daß a der Grenzwert ist.

Berechne hier [mm]f\left(x\right)-a[/mm].

Davon ist der Betrag zu nehmen:

[mm]\vmat{f\left(x\right)-a} < \varepsilon[/mm]

Hier sind dann zwei Fallunterscheidungen möglich:

i) 4x+16 > 0
ii) 4x+16 < 0



>  
> d) Wenn man sich den Graf anschaut, sieht man ja, dass er
> im Bereich von -4 gegen +oo bzw. -oo geht. Aber wie kann
> ich das rechnerisch beweisen?
>


Betrachte einmal das Verhalten, für [mm]x \to -4, \ x < -4[/mm]
und für [mm]x \to -4, \ x > -4[/mm]

Berechne also

[mm]\limes_{x \rightarrow -4, \ x < -4}f\left(x\right)[/mm]

und

[mm]\limes_{x \rightarrow -4, \ x > -4}f\left(x\right)[/mm]



>
> So, das wären erstmal meine Fragen/Probleme. Wäre sehr
> nett wenn mir jemand bei c) und d) weiterhelfen könnte,
> Dankeschön schonmal im Voraus :).
>  
>
> Rick
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruss
MathePower

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Mi 07.10.2009
Autor: DerRicker

Okay, vielen Dank schonmal, aber bei c) bin ich leider immer noch nicht sicher, wie ich ansetzen soll.

Wie kann denn der Betrag |f(x)-a| kleiner als [mm] \varepsilon [/mm] sein, wenn [mm] \varepsilon [/mm] > 0 ist. Das würde ja heißen, dass dieser Betrag < 0 sein müsste, aber ein Betrag kann doch eig. gar nicht < 0 sein...!?

Außerdem stellt sich mir die Frage, wie ich in diesem Fall mit Polynomdivision vorgehen soll... Mir ist die Polynomdivision bisher nur als Mittel beispielsweise zum Bestimmen der Nst. einer höhergradigen Funktion bekannt.


Wäre sehr freundlich, wenn darauf jemand noch einmal genauer eingehen könnte.


Rick :)

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Mi 07.10.2009
Autor: Al-Chwarizmi

Hallo Rick,

> Okay, vielen Dank schonmal, aber bei c) bin ich leider
> immer noch nicht sicher, wie ich ansetzen soll.
>
> Wie kann denn der Betrag |f(x)-a| kleiner als [mm]\varepsilon[/mm]
> sein, wenn [mm]\varepsilon[/mm] > 0 ist. Das würde ja heißen, dass
> dieser Betrag < 0 sein müsste     [notok]

Nein. Der Betrag soll nur sehr klein werden (zwischen
Null und [mm] \varepsilon [/mm] liegend).

Das a steht ja wohl für den Grenzwert [mm] \frac{1}{4} [/mm] , den
du unter b) schon angegeben hast. Um zu zeigen, dass
dies nun wirklich der Grenzwert von f(x) für [mm] x\to\infty [/mm] ist,
muss man nun nachweisen, dass |f(x)-a| wirklich beliebig
klein wird, wenn man nur das x genügend groß wählt.
Für diesen Nachweis haben wir es also mit der Ungleichung

      [mm] |f(x)-a|<\varepsilon [/mm]

zu tun, hier:

      [mm] $\left|\frac{x+9}{4\,x+16}-\frac{1}{4}\right|<\varepsilon$ [/mm]

Zwischen den Absolutstrichen auf gleichen Nenner gebracht:

      [mm] $\left|\frac{x+9}{4\,x+16}-\frac{x+4}{4\,x+16}\right|<\varepsilon$ [/mm]

und zusammengefasst:

      [mm] $\left|\frac{5}{4\,x+16}\right|<\varepsilon$ [/mm]

Jetzt bleibt noch diese Ungleichung aufzulösen.
In der Aufgabe war vermutlich gemeint, dass man
sich dabei auf positive x beschränken kann, weil es
ja um den Grenzwert für [mm] x\to\infty [/mm] ging.
Allerdings hat die Ungleichung auch negative Lösungen.

  

> Außerdem stellt sich mir die Frage, wie ich in diesem Fall
> mit Polynomdivision vorgehen soll... Mir ist die
> Polynomdivision bisher nur als Mittel beispielsweise zum
> Bestimmen der Nst. einer höhergradigen Funktion bekannt.

Polynomdivision braucht man hier nicht unbedingt,
aber es wäre auch ein möglicher Weg:

  $\ f(x)\ =\ [mm] \frac{x+9}{4\,x+16}\ [/mm] =\ [mm] (x+9):(4\,x+16)\ [/mm] =\ [mm] \underbrace{\frac{1}{4}}_a+\,\underbrace{..................................}_{Term,\, der\ gegen\ Null\ strebt}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de