www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Kurvendiskussion
Kurvendiskussion < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Fragen
Status: (Frage) beantwortet Status 
Datum: 18:40 Mi 14.10.2009
Autor: hansmann

Aufgabe
3.1
Berechnen Sie a und b so, dass das Schaubild der Funktion x -> a*x + b* cos(x) , x Element Rationale Zhalen, im Punkt P ((PI/2)|(-PI/4)) die Steigung -5/2 hat.

3.2 Gegeben ist die Funktion f mit
f/x) = -1/2x+ 2*cos(x), x Element [-2;5].
Ihr Schaubild ist Kf.
Untersuchen Sie Kf auf Hich- und Tief und Wendepunkte.
Zeichnen Sie kF mit 1 LE = 1cm.


Hallo,
das sind 2 Prüfungsaufgaben der Fachhochschulreife von 98.
Da ich die letzte Woche Krank war, kam ich noch nicht so ganz mit. Die Aufgabe 3.2 könnte ich noch hinbekommen bei 3.1 wirds bisschen kritisch.
Bin nicht gerade das Mathe-Genie und möchte gerne wissen, wie die einzelnen Schritte sind, die ich tun muss. Lösungen braucht ihr natürlich keine machen, aber eine Erklärung wäre sehr nett.
So ganz versteh ich auch nie, was ich einfügen muss.
Da wir auch letzte Woche einen super, modernen Taschenrechner bekommen haben, der alles kann, könnt ihr mir auch gerne einpaar Tipps für diesen geben.

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kurvendiskussion: Aufgabe 3.1
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 14.10.2009
Autor: ChopSuey

Hallo hansmann,

[willkommenmr]

> 3.1
>  Berechnen Sie a und b so, dass das Schaubild der Funktion
> x -> a*x + b* cos(x) , x Element Rationale Zhalen, im Punkt
> P ((PI/2)|(-PI/4)) die Steigung -5/2 hat.

Also:

$\ f(x) = [mm] ax+b\cos(x) [/mm] $ mit $\ x [mm] \in \IQ [/mm] $ und $\ f'(x) = [mm] -\frac{5}{2} [/mm] $ an der Stelle $\ [mm] x_0 =\frac{\pi}{2} [/mm] $
Gesucht $\ a, b $

$\ f'(x) = [mm] -\frac{5}{2} [/mm] $ deshalb, weil die Steigung an einer Stelle $\ [mm] x_0 [/mm] $ immer durch die erste Ableitung $\ f'(x) $ an genau dieser Stelle ausgedrückt wird.

Wir entnehmen der Angabe ausserdem die Information, dass

$\ f(x) = [mm] ax+b\cos(x) [/mm] $ durch den Punkt $\ P [mm] \left(\frac{\pi}{2}\ /\ -\frac{\pi}{4}\right) [/mm] $ läuft.

Deshalb ist $\ f(x) = [mm] -\frac{\pi}{4}$ [/mm] und $\ x = [mm] \frac{\pi}{2} [/mm] $

$\ [mm] \Rightarrow -\frac{\pi}{4} [/mm] = [mm] a(\frac{\pi}{2})+b\cos(\frac{\pi}{2}) [/mm] $

Doch wegen $\ [mm] \cos(\frac{\pi}{2}) [/mm] = 0 $ folgt

$\ [mm] \Rightarrow -\frac{\pi}{4} [/mm] = [mm] a(\frac{\pi}{2}) [/mm] $ auf beiden Seiten mit 4 multipliziert ..

$\ [mm] \Rightarrow -\pi [/mm] = [mm] 2a\pi [/mm] $

$\ [mm] \Rightarrow [/mm]  -1 = 2a $

$\ [mm] \Rightarrow -\frac{1}{2} [/mm] = a $

Damit hätten wir schonmal unser $\ a $. Nun suchen wir $\ b$ und entnehmen der Angabe folgende weitere Information:

$\ [mm] f'(x_o) [/mm] = [mm] -\frac{5}{2} [/mm] $ und $\ [mm] x_0 [/mm] = [mm] \frac{\pi}{2} [/mm] $

Wir bilden also die erste Ableitung :

$\ f'(x) = a + [mm] b*(-\sin(x)) [/mm] $

Nun setzen wir $\ [mm] f'(x_o) [/mm] = [mm] -\frac{5}{2} [/mm] $ und $\ [mm] x_0 [/mm] = [mm] \frac{\pi}{2} [/mm] $ ein:

$\ [mm] \Rightarrow -\frac{5}{2} [/mm] = a + [mm] b*(-\sin(\frac{\pi}{2})) [/mm] $

$\ [mm] \gdw -\frac{5}{2} [/mm] = a - [mm] b\sin(\frac{\pi}{2}) [/mm] $; $\ [mm] \sin(\frac{\pi}{2}) [/mm] = 1 $

$\ [mm] \gdw -\frac{5}{2} [/mm] = a - b $

$\ [mm] \gdw -(\frac{5}{2}+a) [/mm] = b $

Wir wissen aber mittlerweile, dass $\  [mm] -\frac{1}{2} [/mm] = a $ und deshalb

$\ [mm] \Rightarrow -(\frac{5}{2} -\frac{1}{2}) [/mm] = b $

$\ [mm] \Rightarrow \frac{6}{2} [/mm] = b = -3 $



>  
> 3.2 Gegeben ist die Funktion f mit
>  f/x) = -1/2x+ 2*cos(x), x Element [-2;5].
>  Ihr Schaubild ist Kf.
>  Untersuchen Sie Kf auf Hich- und Tief und Wendepunkte.
> Zeichnen Sie kF mit 1 LE = 1cm.
>  
>
> Hallo,
>  das sind 2 Prüfungsaufgaben der Fachhochschulreife von
> 98.
>  Da ich die letzte Woche Krank war, kam ich noch nicht so
> ganz mit. Die Aufgabe 3.2 könnte ich noch hinbekommen bei
> 3.1 wirds bisschen kritisch.
> Bin nicht gerade das Mathe-Genie und möchte gerne wissen,
> wie die einzelnen Schritte sind, die ich tun muss.
> Lösungen braucht ihr natürlich keine machen, aber eine
> Erklärung wäre sehr nett.
>  So ganz versteh ich auch nie, was ich einfügen muss.
>  Da wir auch letzte Woche einen super, modernen
> Taschenrechner bekommen haben, der alles kann, könnt ihr
> mir auch gerne einpaar Tipps für diesen geben.
>  
> Gruß
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hoffe, dass ich ein wenig helfen konnte. Wollte zuerst Aufgabe 2 ebenfalls beantworten, habe dann aber nicht das Intervall von $\ x $ berücksichtigt und musste meine Rechnung verwerfen ;-) Evtl schreib ich nacher etwas dazu, brauch erstmal ne Pause.

Frag ruhig, wenn etwas unklar ist.

Viele Grüße
ChopSuey

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mi 14.10.2009
Autor: hansmann

Hey,
hab alles nachgerechnet, und hab für b=2 raus?
Was hast du da zum schluss umgestellt dsa du auf -3 kommst?> Hallo hansmann,



Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 14.10.2009
Autor: MathePower

Hallo hansmann,

> Hey,
>  hab alles nachgerechnet, und hab für b=2 raus?


Stimmt. [ok]


>  Was hast du da zum schluss umgestellt dsa du auf -3
> kommst?> Hallo hansmann,
>  


Nun, da hat sich mein Vorredner verschrieben/verrechnet.

Es muss hier lauten:

[mm]-\left(\bruch{5}{2}-\bruch{1}{2}\right)=\blue{-}b[/mm]

Dann wurde hier nicht richtig ausmultipliziert:

[mm]-\left(\bruch{5}{2}-\bruch{1}{2}\right)\blue{\not=}\bruch{6}{2}[/mm]


Gruss
MathePower

Bezug
        
Bezug
Kurvendiskussion: Taschenrechner
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Mi 14.10.2009
Autor: Loddar

Hallo hansmann!


> Da wir auch letzte Woche einen super, modernen
> Taschenrechner bekommen haben, der alles kann, könnt ihr
> mir auch gerne einpaar Tipps für diesen geben.

Dafür musst Du uns aber erst den Typ des Rechners verraten ...


Gruß
Loddar


Bezug
                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Mi 14.10.2009
Autor: hansmann

Voyage 200



Bezug
        
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Mi 14.10.2009
Autor: rabilein1


>  Da wir auch letzte Woche einen super, modernen
> Taschenrechner bekommen haben, der alles kann, könnt ihr
> mir auch gerne ein paar Tipps für diesen geben.

Auch wenn dein Rechner alles kann, so kann er eines bestimmt nicht: Nämlich Textaufgaben in Formeln umwandeln.

Tipp zu 3.1 :
Was heißt "Steigung -5/2" formelmäßig ?
Setze P ((PI/2)|(-PI/4))  in deine Ausgangsformel x -> a*x + b* cos(x) ein

Es läuft auf 2 Gleichungen mit 2 Unbekannten raus. So ein System solltest du lösen können.




Bezug
                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Mi 14.10.2009
Autor: hansmann

Hey,
ja danke dir.
DAs ist eigentlich mein Hauptproblem, die Fragen zu verstehen... und dann die Zeit in den Klausuren...
Früher war ich ein richtig guter Matheschüler, aber aufeinmal neue Lehrerin in der 10ten, dann ging nix mehr.

Ich verstehs einfach nicht.

Bezug
                        
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Do 15.10.2009
Autor: rabilein1


>  DAs ist eigentlich mein Hauptproblem, die Fragen zu verstehen...

> ...  neue Lehrerin in der 10ten, dann ging nix mehr.

Bei einer Textaufgabe ist das Allerwichtigste, den Text erst einmal richtig zu verstehen. Vorher braucht man sich gar keine Gedanken über den Lösungsweg zu machen.

Deshal handelt es hier in erster Linie nicht um ein Mathe-Problem, sondern um ein Deutsch-Problem. Und leider sind die wenigsten Mathe-Lehrer gleichzeitig auch gute Deutsch-Lehrer, die den Kindern beibringen können, wie sie Texte zu interpretieren haben.

Das ist wohl auch das Problem bei deiner neuen Lehrerin.

Mein Tipp:
Suche dir Text-Aufgaben aus deinem Buch, und versuche zunächst einmal nur, zu verstehen, wie sie gemeint sind.
Was ist gesucht?  Was ist gegeben? Unterstreiche wichtige Signalwörter. Gibt es Wörter, die du nicht kennst?
Falls möglich, mache eine Zeichnung.

So lange man die Aufgabe nicht vollständig verstanden hat, macht es überhaupt keinen Sinn, irgend was in seinen Taschenrechner einzutippen.

Bezug
                                
Bezug
Kurvendiskussion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Do 15.10.2009
Autor: fred97

  
> Deshal handelt es hier in erster Linie nicht um ein
> Mathe-Problem, sondern um ein Deutsch-Problem. Und leider
> sind die wenigsten Mathe-Lehrer gleichzeitig auch gute
> Deutsch-Lehrer, die den Kindern beibringen können, wie sie
> Texte zu interpretieren haben.
>  
>

Hallo Rabilein,


Du bedauerst, dass die wenigsten Mathe-Lehrer gleichzeitig auch gute Deutsch-Lehrer sind,  die den Kindern beibringen können, wie sie
Texte zu interpretieren haben?

Das ist doch wohl nicht Dein Ernst !

1. Niemand verlangt von einem Deutschlehrer, dass er ein guter Mathematiklehrer ist. Da hat noch keiner gemeckert.

2. In einer Mathematikaufgabe sollte es nichts zu interpretieren geben. Wenn die Aufgabe dennoch Raum für Interpretationen lässt, so ist die Aufgabe Mist.


FRED

Bezug
                                        
Bezug
Kurvendiskussion: Mathe-Deutsch ist schwer
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:48 Do 15.10.2009
Autor: rabilein1


> Du bedauerst, dass die wenigsten Mathe-Lehrer gleichzeitig
> auch gute Deutsch-Lehrer sind,  die den Kindern beibringen
> können, wie sie Texte zu interpretieren haben?
>  
> Das ist doch wohl nicht Dein Ernst !

Das ist mein voller Ernst.
Warum haben denn so viele Kinder Schwierigkeiten mit Textaufgaben? Weil ihnen niemand beibringt, wie sie Texte zu interpretieren haben!


> 1. Niemand verlangt von einem Deutschlehrer, dass er ein
> guter Mathematiklehrer ist. Da hat noch keiner gemeckert.

Von mir aus können ja auch die Deutschlehrer den Kindern zeigen, wie man Mathe-Textaufgaben versteht.
Ich denke aber, dass das eher die Aufgabe der Mathe-Lehrer sein sollte.

  

> 2. In einer Mathematikaufgabe sollte es nichts zu interpretieren geben.

Mit interpretieren meinte ich nicht, dass es mehrere Möglihkeiten gibt, wie man die Aufgabe verstehen kann, und man sich dann die einfachste davon aussucht.

Aber ich habe sehr oft festgestellt, dass Schüler den Sinn einer Aufgabe überhaupt nicht begriffen haben, obwohl sie jedes einzelne Wort kannten.

Mir geht das genau so, wenn ich Mathe-Aufgaben in Englisch sehe, obwohl ich "normales" Englisch verstehe.  

Die Kinder können auch alle "normales" Deutsch, aber eben kein Mathe-Deutsch. Und das müsste ihnen m.E. eher der Mathe-Lehrer als der Deutsch-Lehrer beibringen.



Bezug
        
Bezug
Kurvendiskussion: Kluger dummer Taschenrechner
Status: (Antwort) fertig Status 
Datum: 20:04 Mi 14.10.2009
Autor: rabilein1


> Bin nicht gerade das Mathe-Genie ...
> Wir haben letzte Woche einen supermodernen Taschenrechner bekommen ...

Auch wenn ich eben schrieb, dass du trotz supermodernem Taschenrechner nicht darum herum kommst, Texte zu verstehen, weil die Rechner das (noch) nicht können, so habe ich dennoch folgende Erfahrungen gemacht:
Schüler, die in Mathe wenig begabt sind, erzielen mit Hilfe eines supermodernen Taschenrechners erstaunlich gute Ergebnisse. Wenn sie einmal gelernt haben, dass sie auf eine so-und-so gestellte Frage das-und-das eintippen müssen, dann fallen ihre Klausuren erstaunlich gut aus.
Man darf nur nicht genauer nachfragen, warum das so ist.
Das wissen sie dann genau so wenig wie ihr Rechner.


Bezug
        
Bezug
Kurvendiskussion: Aufgabe 3.2
Status: (Antwort) fertig Status 
Datum: 20:11 Mi 14.10.2009
Autor: Loddar

Hallo hansmann!


Bei dieser Aufgabe musst Du zunächst die ersten beiden Ableitungen bestimmen und anschließend die Nullstellen der 1. Ableitung ermitteln.

Bedenke dabei das vorgegebene Intervall.

Wie lauten denn Deine Ableitungen?


Gruß
Loddar


Bezug
                
Bezug
Kurvendiskussion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:32 Mi 14.10.2009
Autor: hansmann

Wie bringe ich den Intervall mit ein?
Da hab ich leider gepennt^^

Bezug
                        
Bezug
Kurvendiskussion: Kandidaten?
Status: (Antwort) fertig Status 
Datum: 23:00 Mi 14.10.2009
Autor: Loddar

Hallo hansmann!


Lassen wir erst einmal das Intervall außen vor. Wie lauten denn Deine bisherigen Extremwertkandidaten?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de