www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Kurvendiskussion
Kurvendiskussion < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Gleichungen für Pol. 3ten Gr.
Status: (Frage) beantwortet Status 
Datum: 09:42 Fr 27.05.2005
Autor: KingChango

Hallo zusammen! Leider ist bei mir Kurvendiskussion schon eine zeit lang her. weiss zwar noch wies geht aber jetzt bin ich auf ein bsp gestossen wo ich hänge. kann nicht so schwer sein daher hoffe ich dass ihr mir schnell helfen könnt!!

ich habe ein polynom 3ten grade (a [mm] x^{3} [/mm] + b  [mm] x^{2} [/mm] + cx + d )

Nustelle (2/0) und bei x=1 ein minimum
Der anstieg der tangente an der wendestelle x=0 beträgt -3

jetzt will ich a b c d mit hilfe der gleichungen ermitteln.... das problem nur: ich weiss nicht welche gleichungen ich anschreiben kann.  nur: f(2) = 0 bei den anderen bin ich mir nicht sicher. Vielen dank im vorraus

        
Bezug
Kurvendiskussion: Ansätze für Gleichungen
Status: (Antwort) fertig Status 
Datum: 09:56 Fr 27.05.2005
Autor: Roadrunner

Hallo KingChango!


> ich habe ein polynom 3ten grade ([mm]a*x^{3} + b*x^{2} + c*x + d[/mm] )
>  
> Nullstelle (2/0) und bei x=1 ein minimum
> Der Anstieg der tangente an der wendestelle x=0 beträgt -3

Nullstelle bei N(2|0)  [mm] $\Rightarrow$ [/mm]  $f(2) \ = \ 0$  [ok] Stimmt.


Bei einem Extremum (Maximum oder Minimum) muß die 1. Ableitung gleich Null werden (notwendiges Kriterium).  [mm] $\Rightarrow$ $f'(x_E) [/mm] \ = \ 0$


Bei einer Wendestelle muß die 2. Ableitung gleich Null werden (notwendiges Kriterium).  [mm] $\Rightarrow$ $f''(x_W) [/mm] \ = \ 0$


Die "Anstieg der Wendetangente" bedeutet, daß an der Wendestelle die Kurve [mm] $K_f$ [/mm] dieselbe Steigung hat wie die Wendetangente.  [mm] $\Rightarrow$ $f'(x_W) [/mm] \ = \ -3$


Kannst du nun die Funktion bestimmen?


Gruß vom
Roadrunner


Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Fr 27.05.2005
Autor: KingChango

also erstmal vielen dan für die schnelle antwort!

mein problem ist nur das ich das a erhalte!! mit f''(0) = -3 erhalte ich b =-3/2

und mit f'(1) = 0 erhalte ich die gleichung 3a+2b+c = 0

es muss doch noch irgendeine gleichung geben damit ich a bekommen...

ein minimum hab ich ja wenn ich xE in f'' einsetzte und das grösser 0 ist.....aber hilft mir das was?

Bezug
                        
Bezug
Kurvendiskussion: Korrektur
Status: (Antwort) fertig Status 
Datum: 10:28 Fr 27.05.2005
Autor: Roadrunner

Hallo!


> mein problem ist nur das ich das a erhalte!! mit f''(0) = -3

[notok] Hier mußt du die erste Ableitung $f'(x)$ nehmen!
(siehe auch meine Antwort oben)


> und mit f'(1) = 0 erhalte ich die gleichung 3a+2b+c = 0

[ok]


> es muss doch noch irgendeine gleichung geben damit ich a
> bekommen...

Wie lauten denn Deine anderen drei Bestimmungsgleichungen?



> ein minimum hab ich ja wenn ich xE in f'' einsetzte und das
> grösser 0 ist.....aber hilft mir das was?

Das bringt Dir nichts.
Da kannst Du am Ende kontrollieren, ob es sich wirklich um ein Minimum handelt und nicht "aus Versehen" doch um ein Maximum!  


Gruß vom
Roadrunner


Bezug
                                
Bezug
Kurvendiskussion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:39 Fr 27.05.2005
Autor: KingChango

meine 3 gleichungen lauten :
8a+4b+2c+d=0   (f(2)=0)
3a+2b+c=0         (f'(1)=0)
2b=-3                  (f''(0)=-3)

fehlt ur noch a damit ich alles ermittlen kann.....das andere bsp hab ich gechecked!! danke!!

Bezug
                                        
Bezug
Kurvendiskussion: weitere Korrekturen
Status: (Antwort) fertig Status 
Datum: 10:46 Fr 27.05.2005
Autor: Roadrunner

Hallo ...


> 8a+4b+2c+d=0   (f(2)=0)     [ok]

> 3a+2b+c=0      (f'(1)=0)    [ok]


> 2b=-3          (f''(0)=-3)  [notok] Es muß heißen: $f''(0) \ = \ [mm] \red{0}$ [/mm]

Und was ist mit der Gleichung (wegen Tangentensteigung): [mm] $f\red{'}(0) [/mm] \ = \ -3$ ??


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de