www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Kurvendiskussion
Kurvendiskussion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Bijektivität, Umkehrfunktion
Status: (Frage) beantwortet Status 
Datum: 16:37 Mi 08.02.2012
Autor: fe11x

Aufgabe
Gegeben ist f(x)= [mm] \bruch{x|x|}{1+x^2} [/mm]
Wo ist sie stetig, wo ist sie differenzierbar?
Zeige: Streng monoton wachsend, bijektive Abbildung auf Intervall [-1,1]
Berechne die Umkehrfunktion von f(x).
Berechne die Ableitung g'(y), y aus [-1,1] \ {0}

hallo zusammen.
hab dazu mal eine frage. vielleicht kann mir jemand helfen.

1. ist es richtig, das ich die funktion mal aufgeteilt habe und die fälle x positiv und x negativ unterschieden habe? dann bekomm ich 2 teilfunktionen. dann wusste ich aber nicht wo ich jetzt die 0 dazugebe, da es aber glaube ich egal ist hab ich sie zum positiven teil gegeben.

2. die stetigkeit und differenzierbarkeit war nicht schwer. das hab ich geschafft.

3 . strenge monotonie war auch nicht schwer, da die erste ableitung immer positiv ist.

4. bei der bijektivität bin ich mir jetzt nicht sicher. ich weiß das wenn ich x gegen + und - unendlich laufen lasse, die funktion gegen +1 und -1 läuft. aus der monotonie erhält man die injektivität oder? eigentlich müsste hier ja aus der stetigkeit die surjektivität folgen was ja dann zur bijektivität reicht oder?

5. wie man jetzt die umkehrfunktion berechnet und deren ableitung weiß ich nicht. könnte mir da jemand helfen?

danke im voraus.
grüße
felix

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mi 08.02.2012
Autor: abakus


> Gegeben ist f(x)= [mm]\bruch{x|x|}{1+x^2}[/mm]
>  Wo ist sie stetig, wo ist sie differenzierbar?
>  Zeige: Streng monoton wachsend, bijektive Abbildung auf
> Intervall [-1,1]
>  Berechne die Umkehrfunktion von f(x).
>  Berechne die Ableitung g'(y), y aus [-1,1] \ {0}
>  hallo zusammen.
>  hab dazu mal eine frage. vielleicht kann mir jemand
> helfen.
>  
> 1. ist es richtig, das ich die funktion mal aufgeteilt habe
> und die fälle x positiv und x negativ unterschieden habe?
> dann bekomm ich 2 teilfunktionen. dann wusste ich aber
> nicht wo ich jetzt die 0 dazugebe, da es aber glaube ich
> egal ist hab ich sie zum positiven teil gegeben.
>  
> 2. die stetigkeit und differenzierbarkeit war nicht schwer.
> das hab ich geschafft.
>  
> 3 . strenge monotonie war auch nicht schwer, da die erste
> ableitung immer positiv ist.
>  
> 4. bei der bijektivität bin ich mir jetzt nicht sicher.
> ich weiß das wenn ich x gegen + und - unendlich laufen
> lasse, die funktion gegen +1 und -1 läuft. aus der
> monotonie erhält man die injektivität oder? eigentlich
> müsste hier ja aus der stetigkeit die surjektivität
> folgen was ja dann zur bijektivität reicht oder?
>  
> 5. wie man jetzt die umkehrfunktion berechnet und deren
> ableitung weiß ich nicht. könnte mir da jemand helfen?

Hallo,
du müsstest die Funktionsgleichung nach x umstellen und dann x und y vertauschen.
Nehmen wir mal den Fall x>0, also |x|=x :
Aus [mm]y=\bruch{x^2}{1+x^2}[/mm] folgt [mm]y+x^2*y=x^2[/mm], daraus [mm]y=x^2(1-y)[/mm]. Das kannst du nach x umstellen...
Gruß Abakus

>  
> danke im voraus.
>  grüße
>  felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de