www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage
Status: (Frage) beantwortet Status 
Datum: 16:48 Sa 27.08.2005
Autor: rhea

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


hallo zusammen...

ich habe gerade eine kurvendiskussion durgerechnet.

f(x)= [mm] x^4-4x^3+4x^2 [/mm]

ich bin auf eine einzige Nullstelle N(0/0) gekommen, auf den TP(0/0). Einen Wendepunkt gibt es nach meiner rechnung nicht. Kann das stimmen? Mir kam das ein bisschen "strange" vor....:)..

würde mich über antworten freuen...

lieber gruß..
Rhea..


        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Sa 27.08.2005
Autor: Stefan

Hallo rhea!

Das kommt dir zu recht "strange" vor. :-)

Zu den Nullstellen:

$0 = f(x) = [mm] x^2 \cdot (x^2-4x+4) [/mm] = [mm] x^2 \cdot (x-2)^2$. [/mm]

Wir haben also zwei (zweifache) Nullstellen: [mm] $x_1=0$ [/mm] und [mm] $x_2=2$. [/mm]

Zu den Extremstellen:

$f'(x) = [mm] 4x^3-12x^2+8x [/mm] = 4x [mm] \cdot (x^2-3x+2) [/mm] = 4x [mm] \cdot [/mm] (x-2) [mm] \cdot [/mm] (x-1)$.

Wir haben also drei potentielle Extremstellen: [mm] $x_1=0$, $x_2=1$, $x_3=2$. [/mm]

Nun gilt:

$f''(x)= [mm] 12x^2-24x+8$, [/mm]

also:

$f''(0)=8>0$,
$f''(1) = -4<0$,
$f''(2) = 8>0$.

Wir haben also zwei Tiefpunkte [mm] $T_1(0/0)$ [/mm] und [mm] $T_2(2/0)$ [/mm] und einen Hochpunkt $H(1/1)$.

Viele Grüße
Stefan



Bezug
                
Bezug
Kurvendiskussion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:33 Sa 27.08.2005
Autor: rhea



Danke erstmal für deine schnelle Antwort!.:)..

Du bist ja von     f(x)= [mm] x^2*(x^2-4x*4) [/mm]    auf    [mm] x^2*(x-2)^2 [/mm]   gekommen....wie das?...mit der binomischen formel, oder?...ok...aber wie dann auf die Nullstelle 2?.....ich hatte das mit der pq-Formel gerechnet. Ist das nicht möglich?..

Ebenfalls kann ich nicht nachvollziehen, um von [mm] 4x*(x^2-3x+2) [/mm]   auf    4x*(x-2)*(x-1) zu kommen?...

wäre lieb wenn Du mir das noch mal erklären könntest?..:)

lieber gruß..
Rhea..



Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Sa 27.08.2005
Autor: Stefan

Hallo!

Genau, mit der binomischen Formel. Und

[mm] $(x-2)^2=0 \quad \Leftrightarrow \quad [/mm] x-2=0 [mm] \quad \Leftrightarrow \quad [/mm] x=2$,

denn ein Quadrat einer Zahl ist genau dann Null, wenn die Zahl selbst Null ist.

Es geht aber auch (umständlicher) mit der $p/q$-Formel von

[mm] $x^2-4x-4$, [/mm]

dann ist der Term unter der Wurzel $0$.

> Ebenfalls kann ich nicht nachvollziehen, um von
> [mm]4x*(x^2-3x+2)[/mm]   auf    4x*(x-2)*(x-1) zu kommen?...

Nun, ich habe die Nullstellen $x=2$ und $x=1$ von [mm] $x^2-3x+2$ [/mm] sofort gesehen, du kannst die aber auch mit Hilfe der $p/q$-Formel berechnen oder dem MBSatz von Vieta, klar.

Viele Grüße
Stefan  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de