www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Kurvendiskussion
Kurvendiskussion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Mo 09.04.2012
Autor: mike1988

Hallo!

Wir behandeln gerade Funktionen in 2 Variablen und deren Extremalstellen! Es stellt sich für mich nun die Frage, wo genaue der Unterschied zwischen relativen Extremas, lokalen Extremas, Randextremas und absolute Extremas liegt! Es geht mir hierbei um den
Rechenvorgang! Ist dieser unterschiedlich, welche Extrema ich berechnen soll, oder rechne ich prinzipiell gleich und unterscheide dann zum Schluss, wenn ich die Extremwerte berechnet habe, ob es sich um relative, lokale, oder absolute handelt??

Zum Thema Randextrema: Angenommen die Funktion lautet: [mm] f_{x,y}=x^2+2x+y^2-2y, [/mm] wobei gilt; 0 [mm] \le [/mm] x,y [mm] \le [/mm] 3

Dann hätte cih ja im Prinzip 4 "Bereiche" (=Gerdaden), wo Extremalstellen liegen könnten! Wie kann ich diese nun berechnen??

Vielen Dank für eure Tipps bzw. Erklärungen!

Lg

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Mo 09.04.2012
Autor: Diophant

Hallo,

> Hallo!
>
> Wir behandeln gerade Funktionen in 2 Variablen und deren
> Extremalstellen! Es stellt sich für mich nun die Frage, wo
> genaue der Unterschied zwischen relativen Extremas, lokalen
> Extremas, Randextremas und absolute Extremas liegt! Es geht
> mir hierbei um den
> Rechenvorgang! Ist dieser unterschiedlich, welche Extrema
> ich berechnen soll, oder rechne ich prinzipiell gleich und
> unterscheide dann zum Schluss, wenn ich die Extremwerte
> berechnet habe, ob es sich um relative, lokale, oder
> absolute handelt??

Die Begrifflichkeiten sind die gleichen wie bei reellwertigen Funktionen einer Veränderlichen. Aber natürlich liegen die Dinge dennoch komplizierter, denn die Definitionsmenge ist keine eindimensionale Menge mehr. Besteht der Rand bei einem abgeschlossenen Intervall in [mm] \IR [/mm] aus zwei Punkten, so hast du im [mm] \IR^2 [/mm] im Falle eines Randes etwas linienförmiges, im [mm] \IR^3 [/mm] Flächen, etc.

>
> Zum Thema Randextrema: Angenommen die Funktion lautet:
> [mm]f_{x,y}=x^2+2x+y^2-2y,[/mm] wobei gilt; 0 [mm]\le[/mm] x,y [mm]\le[/mm] 3
>
> Dann hätte cih ja im Prinzip 4 "Bereiche" (=Gerdaden), wo
> Extremalstellen liegen könnten! Wie kann ich diese nun
> berechnen??

Fangen wir hier einmal an. Es sind nicht vier Bereiche, sondern einer, und zwar alle Paare (x,y), für die beide Ungleichungen gelten. Da beide Ungleichungen mit der kleiner oder gleich-Relation versehen sind, sind die beiden in der xy-Ebene liegenden Halbgeraden

x=0 ; [mm] y\le{3} [/mm]
[mm] y\le{3} [/mm] ; [mm] x\ge{0} [/mm]

Ränder des Definitionsbereiches.

Man kann die Extrema auf diesen Rändern finden, wenn man jeweils den konstanten Wert in die Funktionsgleichung einsetzt. Dann erhält man in diesem Fall eine Funktion, die noch von einer Variablen abhängt, da kannst du vorgehen wie gewohnt.

Setze also x=0, berechne alle Extrema für die [mm] y\le{3} [/mm] gilt und verfahre für den anderen Rand genauso.


Gruß, Diophant



Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Mo 09.04.2012
Autor: mike1988

Hallo Diophant!

Habe nun versucht, das Beispiel zu lösen:

a) relative Extrema liegen im Punkt [mm] P_{1}(-1,1) [/mm] als Minimum vor!

b) Ermittlung der Randextrema:

Habe den ersten Fall mit x = 0 und 0 [mm] \le [/mm] y [mm] \le [/mm] 3 berechnet! Daraus erhalte ich ein Minimum im Punkt [mm] P_{2}(-1,1) [/mm]

Habe den zweiten Fall mit y = 0 und 0 [mm] \le [/mm] y [mm] \le [/mm] 3 berechnet! Daraus erhalte keine Extremstelle im angegebenen Bereich.

Nun bin ich der Meinung, dass ich auch die anderen beiden Ränder noch betrachten muss, also:

Habe den dritten Fall mit x = 3 und 0 [mm] \le [/mm] y [mm] \le [/mm] 3 berechnet! Daraus erhalte keine Extremstelle im angegebenen Bereich.

Habe den vierten Fall mit y=3 und 0 [mm] \le [/mm] x [mm] \le [/mm] 3 berechnet! Daraus erhalte ich ein Minimum im Punkt [mm] P_{3}(-1,2) [/mm]

Ist dies so korrekt, oder habe ich einen Fehler??

DANKE

Grüße

Bezug
                        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 09.04.2012
Autor: MathePower

Hallo mike1988,

> Hallo Diophant!
>  
> Habe nun versucht, das Beispiel zu lösen:
>  
> a) relative Extrema liegen im Punkt [mm]P_{1}(-1,1)[/mm] als Minimum
> vor!
>  
> b) Ermittlung der Randextrema:
>  
> Habe den ersten Fall mit x = 0 und 0 [mm]\le[/mm] y [mm]\le[/mm] 3 berechnet!
> Daraus erhalte ich ein Minimum im Punkt [mm]P_{2}(-1,1)[/mm]
>  
> Habe den zweiten Fall mit y = 0 und 0 [mm]\le[/mm] y [mm]\le[/mm] 3
> berechnet! Daraus erhalte keine Extremstelle im angegebenen
> Bereich.
>  
> Nun bin ich der Meinung, dass ich auch die anderen beiden
> Ränder noch betrachten muss, also:
>  
> Habe den dritten Fall mit x = 3 und 0 [mm]\le[/mm] y [mm]\le[/mm] 3
> berechnet! Daraus erhalte keine Extremstelle im angegebenen
> Bereich.
>  
> Habe den vierten Fall mit y=3 und 0 [mm]\le[/mm] x [mm]\le[/mm] 3 berechnet!
> Daraus erhalte ich ein Minimum im Punkt [mm]P_{3}(-1,2)[/mm]
>  
> Ist dies so korrekt, oder habe ich einen Fehler??
>  


Die berechneten Extrema gehören nicht zum betrachteten Bereich.


> DANKE
>  
> Grüße



Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de