www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Kurvendiskussion
Kurvendiskussion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage
Status: (Frage) beantwortet Status 
Datum: 10:24 Sa 10.09.2005
Autor: NacysLuv

Mal wieder bereitet mir meine Hausaufgabe Probleme.
Wir haben letztes Jahr zwar sehr häufig Kurvendiskussionen zu ganzrationalen Funktionen gemacht, jedoch komme ich mit meiner jetzigen Funktion überhaupt nicht zurecht. Da ich denke, dass das für viele hier sehr einfach ist, hoffe ich, dass mir wieder einmal jemand helfen kann!

Die Funktion lautet: [mm] f(x)=2x^4+7x^3+5x^2 [/mm]

Die Ableitungen sind selbst für mich nicht schwer ;)
f'(x) = [mm] 8x^3+21x^2+10x [/mm]
[mm] f''(x)=24x^2+42x+10 [/mm]
f'''(x)= 48x + 42

So. Die Symmetrie war auch noch kein Problem. Das kommt erst bei den
Nullstellen
Extremwerten
Wendepunkten

Egal was ich probiere, nichts funktioniert. Muss ich da nun Polynomdivision anwenden? Denn irgendwie kann ich dann ja nur durch x teilen...
Ausklammern funktioniert auch nicht wirklich, zumindest bei mir nicht.

Ich wäre euch für jegliche Art von Hilfe sehr dankbar!!!

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Sa 10.09.2005
Autor: AT-Colt

Hallo NacysLuv,

Du willst also die Nullstellen der genannten Polynome finden?

Ich denke mal, die Nullstellen von f'' und f''' solltest Du mit der pq-Formel hinbekommen, sicherheitshalber:

Für die Gleichung $0 = [mm] a*x^2 [/mm] +b*x +c$ mit $a [mm] \not= [/mm] 0$ ist $0 = [mm] x^2 +\bruch{b}{a}x +\bruch{c}{a}$ [/mm] ein äquivalentes Problem (hat also dieselben Lösungen). Sei [mm] $p:=\bruch{b}{a}$ [/mm] und [mm] $q:=\bruch{c}{a}$. [/mm] Dann hat das Problem die Lösungen:

[mm] $x_{1,2} [/mm] = [mm] -\bruch{p}{2} \pm \wurzel{\left(\bruch{p}{2}\right)^2-q}$ [/mm]

Nun wenden wir uns f und f' zu:
In diesem Fall ist Polynomdivision, als würdest Du mit Kanonen auf Spatzen schießen.

Du kannst einfach Potenzen von x ausklammern, denn es gilt:
$a*x = 0 [mm] \gdw [/mm] a = 0$ oder $x=0$

Schau mal, ob Du jetzt etwas weiter kommst ^^

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de