www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:09 Fr 06.07.2012
Autor: Mathe-Andi

Aufgabe
Gegeben ist die Funktion der Gleichung [mm] f(x)=-\bruch{1}{4}x^{2}*(x^{2}-8x+15). [/mm]

a) Untersuchen Sie die Funktion auf Symmetrie und ihr Verhalten im Unendlichen. Geben Sie Definitions- und Wertebereich an.

b) Ermitteln Sie die Schnittpunkte mit den Koordinatenachsen, die Extrem- und die Wendepunkte der Funktion.

c) Skizzieren Sie den Graph der Funktion.

d) Bestimmen Sie die Gleichung der Tangente an die Funktion an der Stelle x=1.

e) Die Normale und die Tangente durch den Punkt P(1;?) und die y-Achse bilden ein Dreieck. Berechnen Sie den Flächeninhalt dieses Dreiecks.


Hallo,

ich habe nur ein paar bestimmte Fragen:

a)

Symmetrie, liegt keine vor da weder gilt f(-x)=f(x) noch f(-x)=-f(x).

[mm] D=\IR [/mm]

[mm] W=(-\infty;\infty) [/mm]

[mm] \limes_{x\rightarrow\infty}f(x)= -\infty [/mm]

[mm] \limes_{x\rightarrow-\infty}f(x)= -\infty [/mm]

Frage: Ist das alles so ok in der Formulierung und Ausführung?

b)

Extrempunkte habe ich raus:

[mm] E_{1}(0;0) [/mm] Hochpunkt
[mm] E_{2}(4,22;4,24) [/mm] Hochpunkt
[mm] E_{3}(1,78;-3,11) [/mm] Tiefpunkt

Frage: f(x) kommt aus dem 3. Quadranten und geht in den 4. Quadranten. Ich kann also [mm] E_{1} [/mm] als einen lokalen Hochpunkt und [mm] E_{2} [/mm] als einen globalen Hochpunkt bezeichnen, oder?

e)

Tangentengleichung: i(x)=-2,5x+0,5
Normalengleichung: h(x)=0,4x-2,4
Punkt P(1;-2)

A= 0,5*g*h

h=1 (Abstand des Punktes von der y-Achse, x-Wert)
[mm]g=|i(0)|+|h(0)|=2,9[/mm] (Schnittpunkte mit der y-Achse der Tangenten- und Normalengleichung

A=0,5*2,9*1=1,45

Frage: Ist mein Ergebnis A=1,45 richtig? Was für eine Einheit schreibe ich dort? 1,45 Flächeneinheiten (FE)?

Das wars. Den Rest wusste ich oder konnte ihn mit funkyplot kontrollieren.


        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:19 Fr 06.07.2012
Autor: Steffi21

Hallo,

a)
der Wertebereich ist nicht korrekt, bedenke den Extrempunkt [mm] E_2 [/mm]
b)
ok
e)
Punkt, Tangente, Normale sind ok
1,45 FE sind auch ok

du kannst übrigens auch 1,45 FE mit Funkyplot kontrollieren, lasse dir (nur) Normale und Tangente zeichnen, klicke mit der Maus in besagtes Dreieck, in der Menüleiste findest du ein grünes Symbol, anklicken

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de