www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Kurvendiskussion mit e und ln
Kurvendiskussion mit e und ln < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion mit e und ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 So 17.06.2007
Autor: Mathe-Andi

Aufgabe
Zeigen Sie, dass durch F(x)=x²-x² lnx eine Stammfunktion von f gegeben ist! Berechnen Sie den Inhalt der Fläche, die vom Graphen G, der x-Achse und der Geraden mit der Gleichung x=0,5 vollständig begrenzt wird.  f(x)=2x(1-ln x)

Hallo.

Wie macht man das nochmal? Ich habe von f(x) die Nullstellen (wenn man die überhaupt braucht?) F(x) ist aufgeleitet f(x)=1/3 x³ - 1/3 x³  Oder brauch ich dazu noch etwas? Die Aufgaben sind echt furchtbar kompliziert..

Bin für jede Hilfe dankbar!

Grüße

Andi

        
Bezug
Kurvendiskussion mit e und ln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 So 17.06.2007
Autor: Mathe-Andi

Ich habe bei der Aufleitung von F(x) lnx ganz vergessen. f(x)= 1/3x³-1/3x³ 1/x       Hoffe das ist richtig so.

Bezug
                
Bezug
Kurvendiskussion mit e und ln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 So 17.06.2007
Autor: Kroni

Hi,

die "Aufleitung" gibt es nicht.
Die Stammfunktion ist doch schon angebgen mit [mm] F(x)=x^2-x^2 \cdot \ln(x) [/mm] !
Du sollst die Funktion f(x) integrieren, und die Stammfunktion steht da schon.
Du sollst nur noch durch ableiten zeigen, dass F'(x)=f(x)!

LG

kroni

Bezug
                        
Bezug
Kurvendiskussion mit e und ln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 So 17.06.2007
Autor: Mathe-Andi

Ok, jetzt hab ich das verstanden mit F(x) und f(x). Danke.

Bezug
        
Bezug
Kurvendiskussion mit e und ln: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 So 17.06.2007
Autor: Kroni

Hi,

> Zeigen Sie, dass durch F(x)=x²-x² lnx eine Stammfunktion
> von f gegeben ist! Berechnen Sie den Inhalt der Fläche, die
> vom Graphen G, der x-Achse und der Geraden mit der
> Gleichung x=0,5 vollständig begrenzt wird.  f(x)=2x(1-ln
> x)
>  Hallo.
>  
> Wie macht man das nochmal? Ich habe von f(x) die
> Nullstellen (wenn man die überhaupt braucht?)

Ja, da du die Fläche berechnens sollst, die zwischen der x-Achse (also einer Nullstelle) und x=5 begrenzt wird.

>F(x) ist aufgeleitet f(x)=1/3 x³ - 1/3 x³  Oder brauch ich dazu noch

> etwas? Die Aufgaben sind echt furchtbar kompliziert..

Dein F(x) ist falsch.
Du hast doch f(x) vorgegeben und die Stammfunktin dazu lautet [mm] F(x)=x^2-x^2 \cdot \ln(x) [/mm]

Jetzt einmal von 0 (da linke Nullstelle) bis 05 integrieren, und du bist fertig.
Die zweite Nullstelle wäre x=e, die liegt weiter rechts.
Jetzt weiß ich nicht genau, ob du dann auch von 0.5 bis e integrieren sollst, aber das kann man ja auch mal machen, dann sind das eben zwei Flächen.

LG

Kroni

>  
> Bin für jede Hilfe dankbar!
>  
> Grüße
>  
> Andi


Bezug
                
Bezug
Kurvendiskussion mit e und ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 So 17.06.2007
Autor: Mathe-Andi

Was soll ich denn da zeigen, wenn die Stammfunktion F(x) und f(x) schon angegeben sind?

Soll ich einfach die Werte von 0 bis 0,5 (0,1..0,2..) in F(x) einsetzen? Dann krieg ich mehrere Werte raus, aber das hilft mir auch nicht oder?

Bezug
                        
Bezug
Kurvendiskussion mit e und ln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 So 17.06.2007
Autor: Kroni

Hi,

du sollst F(x) ableiten, und dann sehen, dass f(x) dabei rauskommt. Das ist der Beweis dafür, dass F(x) Stammfunktion von f(x) ist.

Dann bildest du das Integral von 0 bis 0.5 oder eben von 0.5 bis e, und berechnest das, also im Prinzip nur die Werte einsetzen und die Differenz bilden.

LG

Kroni

Bezug
                
Bezug
Kurvendiskussion mit e und ln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 17.06.2007
Autor: Mathe-Andi

Ich bin drauf gekommen, wie es gehn könnte :). Und zwar so:

[Dateianhang nicht öffentlich]

Jetzt hoffe ich bloß, dass das Ergebnis richtig ist. Wenn der Rechenweg richtig ist, wäre ich auch schon froh. Ich wusste allerdings erst nicht, ob ich das in F(x) oder in f(x) integrieren soll. Hoffe F(x) war die richtige Wahl.

Dankeschön und viele Grüße

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                        
Bezug
Kurvendiskussion mit e und ln: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 17.06.2007
Autor: Kroni

Hi.

Du musst schreiben [mm] \integral_{0}^{0.5}{2x \cdot (1-ln x)}dx=[x^2-x^2 \cdot [/mm] ln [mm] x]^{0.5}_{0} [/mm]

Du hast in der eckigen Klammer ein minus vor dem ersten [mm] x^2 [/mm] gemacht, das gehört da nicht hin.

Folglich ergibt sich dann auch ein anderer Flächeninhalt.

Zudem: Wenn du die 0 als Grenze in F(x) einsetzt, dann steht dort: ln(0), und das kannst du nicht berechnen.

Mal nebenbei: Gib mir bitte nochmal f(x) und F(x) vor, wie es in der Aufgabe steht, da F(x) abgeleitet [mm] F'(x)=x-2x\ln(x) [/mm] ergibt und nicht f(x)=2x(1-ln(x)).

LG

Kroni
Du solltest dann schreiben: [mm] \integral_{a}^{0.5} [/mm] und dann a gegen Null gehen lassen (kommt auch 0 raus, aber man kann nicht F(0) schreiben, weil es nicht definiert ist).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de