www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Kurvenintegral 1.Ordnung
Kurvenintegral 1.Ordnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral 1.Ordnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:42 Mi 18.06.2008
Autor: NemoAS

Aufgabe
Berechnen Sie die Kurvenlänge durch Integration.

1) sin(x)     auf  [mm] x\varepsilon[1,2] [/mm]

Hallo,

ich habe mit dem GTR folgendes Ergebnis herausbekommen:

y=sin(x)
y'=cos(x)

[mm] L=\integral_{a}^{b}{\wurzel{(y')²+1}dx} [/mm]

[mm] L=\integral_{a}^{b}{\wurzel{1+cos²(x)}dx} [/mm]

  =1,040246 FE

Meine Frage ist: Wie macht man das mit dem Simson-Verfahren.
Wie sehen die Schritte aus, dass ich das berechnen kann?

Vielen Dank

        
Bezug
Kurvenintegral 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Do 19.06.2008
Autor: Event_Horizon

Hallo!

Das Simpson-Verfahren nähert das Integral doch so an:


[mm] \int_a^c f(x)\,dx\approx\frac{c-a}{6}\left[f(a)+4*f\left(b\right)+f(c)\right] [/mm]   mit [mm] b=\frac{c-a}{2} [/mm]

Du benötigst also nur die Funktionswerte am Anfang, am Ende und genau in der Mitte deines Integrationsintervalls.

Allerdings ist das bisher nur die Keplersche Fassregel. Bei der Simpson-Regel geht es nun darum, daß man das Intervall nochmal in kleinere Teile zerlegt.

Sprich, du berechnest

[mm] \int_1^{1,5}\wurzel{...}\,dx [/mm]

und

[mm] \int_{1,5}^2\wurzel{...}\,dx [/mm]

jeweils getrennt mit der Formel oben, und addierst die Ergebnisse. Du brauchst dann also 5 (!) Funktionswerte für x= a, b, c und x= c,  d, e

macht also

[mm] \frac{c-a}{6}\left[f(a)+4*f(b)+f(c)\right] [/mm]

und

[mm] \frac{e-c}{6}\left[f(c)+4*f(d)+f(e)\right] [/mm]

In der Summe:

[mm] \frac{c-a}{6}\left[f(a)+4*f(b)+f(c)\right]+\frac{e-c}{6}\left[f(c)+4*f(d)+f(e)\right] [/mm]

Die beiden Brüche sind gleich groß, denn die Abstände der Punkte untereinander soll immer gleich sein. Nennen wir den Zähler mal  D  

[mm] \frac{D}{6}\left[f(a)+4*f(b)+f(c)\right]+\frac{D}{6}\left[f(c)+4*f(d)+f(e)\right] [/mm]


[mm] \frac{D}{6}\left[f(a)+4*f(b)+\red{f(c)+f(c)}+4*f(d)+f(e)\right] [/mm]

[mm] \frac{D}{6}\left[f(a)+4*f(b)+\red{2f(c)}+4*f(d)+f(e)\right] [/mm]

Beachte, wie der letzte Summand des linken und der erste des rechten sich verbinden!

Du kannst nun ohne Probleme hinschreiben, wie das ganze aussieht, wenn du dein Integral in drei Teile zerlegst, denn du bekommst in der Klammer noch ein $f(e)+4*f(g)+f(h)$ hinzu.

Und dies ist die Simpson-Regel. Du bestimmst selbst, in wie viele Teile du das Integral zerlegst, und bekommst einen zwar immer länger werdenden, aber extrem einfachen Rechenausdruck geliefert.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de