www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Kurvenintegral 2. Art
Kurvenintegral 2. Art < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral 2. Art: Potenzialfeld
Status: (Frage) beantwortet Status 
Datum: 13:09 So 29.07.2007
Autor: CingChris

Aufgabe
Betrachtet werden folgende Vektorfelder: V: [mm] \IR^2 \to \IR^2 [/mm]  entlang der Kurven C [mm] \subset \IR^2 [/mm] :

V(x,y) = (2y - 2x, [mm] 2x)^T [/mm]        K: ist die Gerade durch die Punkte P1(0,1) und                                    P2(2,2)


Prüfen Sie ob das Vektorfeld ein Potenzialfeld ist. Bestimmen Sie das Kurvenintegral 2. Art. Im Falle eines Potenzialfeldes ist das zugehörige Potenzial Phi zu berechnen und die Wegunabhängigkeit des Integrals ist auszunutzen.  

Hallo als erstes habe ich die Jacobimatrix gebildet und gesehen das diese symmetrisch ist, somit ist es ein Potenzialfeld.  Somit ist [mm] \partialPhi/\partialx [/mm] = Phix = 2y -2x und [mm] \partialPhi/\partialy [/mm] = Phiy = 2x. Wenn ich jetz beide integriere bekomme ich einmal Phi = 2xy -x2 + c(y) und dann Phi = 2xy +c(x) richtig oder ? So jetz ist meine Frage wie bestimme ich die Konstanten um auf Phi zu kommen ? Ich weiß das man c(x) = [mm] -x^2 [/mm] wählen könnte. Dann ist wahrscheinlich c(y) = c nur eine Konstante nicht mehr abhängig von y. So wie bestimme ich den diese Konstante bzw. was mache ich wenn ich das mal nicht so offensichtlich sehe wie hier ? Wenn ich dann das habe brauch ich nur noch Phi(P2) -Phi(P1) zu berechen das ist dann das Kurvenintegral 2. Art. Vieln Dank für die Hilfe.



        
Bezug
Kurvenintegral 2. Art: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 So 29.07.2007
Autor: CingChris

also Phix ist Phi nach x partiell abgeleitet das hats nich ganz gemacht wie ich das wollte. Und y eben das gleiche.

Bezug
        
Bezug
Kurvenintegral 2. Art: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 So 29.07.2007
Autor: Hund

Hallo,

sei V=V(x,y) das Potential, dann gilt:

Vx=2y-2x
Vy=2y

Integration der ersten Gleichung nach x ergibt:
V=2xy-x²+c(y)

Das leiten wir nach y ab:
Vy=2x+c´(y)

Aus der oberen zweiten Gleichung wissen wir, dass Vy=2x, also folgt:
2x+c´(y)=2x, also c´(y)=0, also c(y)=konst.

Somit gilt: V=V(x,y)=2xy-x²+c.

Das ist das Standardverfaren zur Berechnung von Potentialen (bzw. zur Lösung von exakten DGl).

Die restlichen Aufgaben ergeben sich direkt daraus.

Ichweis nicht wie ihr es definiert habt, aber manchmal muss für das Potential grad V=-F gelten. Dann musst du einfach -V nehmen.

Ich hoffe, es hat dir geholfen.

Gruß
Hund



Bezug
                
Bezug
Kurvenintegral 2. Art: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 So 29.07.2007
Autor: CingChris

Ok das hab ich verstanden. Und wie krieg ich jetz das c noch heraus  ? Hier wurde einfach die null gewählt


Bezug
                        
Bezug
Kurvenintegral 2. Art: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 So 29.07.2007
Autor: rainerS

Hallo,

> Ok das hab ich verstanden. Und wie krieg ich jetz das c
> noch heraus  ? Hier wurde einfach die null gewählt

Das kannst du wählen, wie du willst. Ein Potential ist immer nur bis auf eine additive Konstante definiert.

Grüße
   Rainer


Bezug
                        
Bezug
Kurvenintegral 2. Art: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 So 29.07.2007
Autor: Hund

Hallo,

oder du hast zum Beispiel noch eine zusatzliche Bedingung an dein Potential. (Zum Beispiel V(0,0)=0 oder so)

Da in der Aufgabe nichts steht, ist c beliebig.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de