www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Kurvenintegrale
Kurvenintegrale < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Mi 09.12.2009
Autor: RedArmy50

Aufgabe 1
Gegeben seien die Kurven:
1. w(t) = (t; t²; [mm] 2/3t^{3})^{T}(transporniert) [/mm] für 0<= t<=1
2. w(t) = [mm] e^{-t}(cos [/mm] t; sin t; [mm] 1)^{T} [/mm] für  0<= t [mm] <=\infty [/mm] ; (Spirale)
3. w(t) = a(t - sin t; 1 - cos t; [mm] 0)^{T} [/mm] für 0<= [mm] t<=2\pi [/mm] (Zykloide)

Berechnen Sie die Laengen der Kurven.

Aufgabe 2
Berechnen Sie den geometrischen Mittelpunkt der 1. Kurve.

Also hierfuer braeuchte ich ganz dringen hilfe... bei Kurvenintegralen blicke ich irgendwie ueberhaupt nicht durch.... wie kann man hier am besten vorgehen??


danke im vorraus..

MfG Red Army

        
Bezug
Kurvenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Mi 09.12.2009
Autor: MathePower

Hallo RedArmy50,

> Gegeben seien die Kurven:
>  1. w(t) = (t; t²; [mm]2/3t^{3})^{T}(transporniert)[/mm] für 0<=
> t<=1
>  2. w(t) = [mm]e^{-t}(cos[/mm] t; sin t; [mm]1)^{T}[/mm] für  0<= t [mm]<=\infty[/mm]
> ; (Spirale)
>  3. w(t) = a(t - sin t; 1 - cos t; [mm]0)^{T}[/mm] für 0<= [mm]t<=2\pi[/mm]
> (Zykloide)
>  
> Berechnen Sie die Laengen der Kurven.
>  
> Berechnen Sie den geometrischen Mittelpunkt der 1. Kurve.
>  Also hierfuer braeuchte ich ganz dringen hilfe... bei
> Kurvenintegralen blicke ich irgendwie ueberhaupt nicht
> durch.... wie kann man hier am besten vorgehen??
>  


da hier die Längen der Kurven zu berechnen sind,
ist folgendes Integral zu lösen:

[mm]\integral_{t_{1}}^{t_{2}}{ \vmat{\dot{w}\left(t\right)} \ dt}[/mm]


>
> danke im vorraus..
>  
> MfG Red Army


Gruss
MathePower

Bezug
                
Bezug
Kurvenintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mi 09.12.2009
Autor: RedArmy50

danke dir habe ich auch gerade in einem lehrbuch gefunden und es auch berechnet aber meine zweite frage die ich dort gestellt habe bereitet mir kopfschmerzen ich wuerde mich fuer einen ansatz dort freuen...

danke im vorraus

hier die ergebnisse zu den laengen der integrale weiß nicht ob die korrekt sind:

zu 1) L = 5/3 ;  
2) L = [mm] \wurzel{3} [/mm] ;
3) bin ich zu sowas gekommen :

[mm] a*\wurzel{2}*\integral_{0}^{2\pi}{\wurzel{(1 - cos(x))} dx} [/mm]  und hier weiß ich halt nicht wie das integral berechnen muss


MfG Red Army

Bezug
                        
Bezug
Kurvenintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mi 09.12.2009
Autor: MathePower

Hallo RedArmy50,

> danke dir habe ich auch gerade in einem lehrbuch gefunden
> und es auch berechnet aber meine zweite frage die ich dort
> gestellt habe bereitet mir kopfschmerzen ich wuerde mich
> fuer einen ansatz dort freuen...


Der geometrische Mittelpunkt ist der Schwerpunkt.

Anzunehmen ist, daß Du hier den Schwerpunkt bezüglich der Länge berechnen mußt.


>  
> danke im vorraus
>  
> hier die ergebnisse zu den laengen der integrale weiß
> nicht ob die korrekt sind:
>  
> zu 1) L = 5/3 ;  
> 2) L = [mm]\wurzel{3}[/mm] ;

[ok]


> 3) bin ich zu sowas gekommen :
>  
> [mm]a*\wurzel{2}*\integral_{0}^{2\pi}{\wurzel{(1 - cos(x))} dx}[/mm]
>  und hier weiß ich halt nicht wie das integral berechnen
> muss
>  

Wende jetzt für den Ausdruck [mm]1-\cos\left(x\right)[/mm]
die entsprechenden Additionstheoreme an.


>
> MfG Red Army


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de