Kurvenintegration < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:57 So 06.02.2011 | Autor: | Slint |
Aufgabe | Berechnen Sie das Kurvenintegral [mm] $\integral_{K}\vec{F} d\vec{r}$ [/mm] für [mm] $\vec{F}(x,y)=(xe^y,e^x), [/mm] wenn [mm]K[/mm] der Polygonzug $(0,1) [mm] \to [/mm] (0,0) [mm] \to [/mm] (2,0)$ ist. |
Hallo alle zusammen,
ich habe eine Frage bezüglich der oben genannten Aufgabe. Erstmal möchte ich meinen Lösungsweg nennen:
1. Schritt) Test ob [mm] $\vec{F}(x,y)$ [/mm] ein Potentialfeld ist, dies wird mit der Bedingung [mm] $rot\vec{F}=0$ [/mm] überprüft. Ergebnis: [mm] $\vec{F}$ [/mm] ist kein Potentialfeld, also ist [mm] $\integral_{K}\vec{F} d\vec{r}$ [/mm] wegabhängig.
2. Schritt) Parametrisierung der beiden Geraden [mm] $K_1$ [/mm] und [mm] $K_2$, [/mm] genau hier habe ich eine Frage.
Ich habe die Gerade [mm] $K_1$ [/mm] wie folgt parametrisiert, [mm] $K_1=[(0,1-t), [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 1]$. Gerade [mm] $K_2$ [/mm] wurde wie folgt parametrisiert, [mm] $K_2=[(2t,0), [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 1]$.
3. Schritt) Das Gesamtintegral [mm] $\integral_{K}\vec{F} d\vec{r}$ [/mm] ergibt sich aus der Addition der beiden Einzelkurvenintegral von [mm] $K_1$ [/mm] und [mm] $K_2$. [/mm] Als Endergebnis erhalte ich [mm] $\integral_{K}\vec{F} d\vec{r}=1$.
[/mm]
Dieses Ergbnis ist zwar korrekt, allerdings weiß ich nicht so richtig welche Intervalle ich für den Parameter $t$ in der Parametrisierung zu wählen habe. Bei einem Kreis wäre es einfach, aber wie sieht es hier konkret aus? Müsste es nicht bei [mm] $K_2:[(2t,0), [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 2]$ sein? Und wie wäre es bei einem Weg beschrieben durch die Parabel der Form [mm] $y=x^2+1$ [/mm] von Punkt $(0,1)$ nach $(2,5)$? [mm] $K=[(t,t^2+1), [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 2]$ ?
Fragen über Fragen, freue mich auf eure Anregungen.
Viele Grüße,
slint
|
|
|
|
Hallo Slint,
> Berechnen Sie das Kurvenintegral [mm]$\integral_{K}\vec{F} d\vec{r}$[/mm]
> für [mm]$\vec{F}(x,y)=(xe^y,e^x),[/mm] wenn [mm]K[/mm] der Polygonzug [mm](0,1) \to (0,0) \to (2,0)[/mm]
> ist.
> Hallo alle zusammen,
>
> ich habe eine Frage bezüglich der oben genannten Aufgabe.
> Erstmal möchte ich meinen Lösungsweg nennen:
>
> 1. Schritt) Test ob [mm]\vec{F}(x,y)[/mm] ein Potentialfeld ist,
> dies wird mit der Bedingung [mm]rot\vec{F}=0[/mm] überprüft.
> Ergebnis: [mm]\vec{F}[/mm] ist kein Potentialfeld, also ist
> [mm]\integral_{K}\vec{F} d\vec{r}[/mm] wegabhängig.
>
> 2. Schritt) Parametrisierung der beiden Geraden [mm]K_1[/mm] und
> [mm]K_2[/mm], genau hier habe ich eine Frage.
>
> Ich habe die Gerade [mm]K_1[/mm] wie folgt parametrisiert,
> [mm]K_1=[(0,1-t), 0 \le t \le 1][/mm]. Gerade [mm]K_2[/mm] wurde wie folgt
> parametrisiert, [mm]K_2=[(2t,0), 0 \le t \le 1][/mm].
>
> 3. Schritt) Das Gesamtintegral [mm]\integral_{K}\vec{F} d\vec{r}[/mm]
> ergibt sich aus der Addition der beiden
> Einzelkurvenintegral von [mm]K_1[/mm] und [mm]K_2[/mm]. Als Endergebnis
> erhalte ich [mm]\integral_{K}\vec{F} d\vec{r}=1[/mm].
>
> Dieses Ergbnis ist zwar korrekt, allerdings weiß ich nicht
> so richtig welche Intervalle ich für den Parameter [mm]t[/mm] in
> der Parametrisierung zu wählen habe. Bei einem Kreis wäre
> es einfach, aber wie sieht es hier konkret aus? Müsste es
> nicht bei [mm]K_2:[(2t,0), 0 \le t \le 2][/mm] sein? Und wie wäre
Die Parametrisierung ist, wie unter 2) angegeben, korrekt.
> es bei einem Weg beschrieben durch die Parabel der Form
> [mm]y=x^2+1[/mm] von Punkt [mm](0,1)[/mm] nach [mm](2,5)[/mm]? [mm]K=[(t,t^2+1), 0 \le t \le 2][/mm]
> ?
>
Das ist die richtige Parametrisierung.
> Fragen über Fragen, freue mich auf eure Anregungen.
>
> Viele Grüße,
> slint
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:52 So 06.02.2011 | Autor: | Slint |
Danke für die Bestätigung. Könntest du mir noch sagen ob ich bei der Parametrisierung einer Geraden immer $0 [mm] \le [/mm] t [mm] \le [/mm] 1$ setze, oder wonach muss ich mich genau richten? Wenn ich [mm] $\integral_{K}\vec{F}d\vec{r}$ [/mm] für den Fall $(0,1)$ nach $(3,10)$ auf der Parabel [mm] $y=x^2+1$ [/mm] bestimmen wollte, muss dann [mm] K=[(t,t^2+1), [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 3] sein?
Wie parametrisiere ich denn [mm] $y=e^x$ [/mm] mit $x [mm] \in [/mm] [0,1]$, [mm] $K=[(t,e^t), [/mm] 0 [mm] \le [/mm] t [mm] \le [/mm] 1]$?
Viele Grüße,
slint
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:10 So 06.02.2011 | Autor: | leduart |
Hallo
beides ist richtig. du kannst doch immer fesstellen durch einsetzen von t=0 und 1 ob die anfangs und endpunkte richtig sind, wenn du dann noch unsicher bist, nimm irgendeinen Punkt t1 dazwischen, und stell fest ob er auf dem gegebenen weg ist.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:22 So 06.02.2011 | Autor: | Slint |
Habs verstanden. Vielen Dank an euch beide :)
Gruß,
slint
|
|
|
|