Kurvenschar, Beweis dass versc < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:04 Mo 10.10.2005 | Autor: | Rudy |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Moin, ich habe folgende Kurvenschar:
[mm] \bruch{kx-2}{x^{2}}
[/mm]
und soll nun beweisen, dass verschiedene Kurven keine gemeinsamen Punkte haben. Also habe ich erstmal 2 Kurven (keine bestimmten, nur allgemein) gleichgesetzt:
[mm] \bruch{k_{1}x-2}{x^{2}}= \bruch{k_{2}x-2}{x^{2}}
[/mm]
Soweit war noch alles klar, nur frage ich mich jetzt, wie ich weiter vorgehen soll. Folgende Lösung hatte ich raus:
[mm] \bruch{k_{1}x-2}{x^{2}}= \bruch{k_{2}x-2}{x^{2}}|*x^{2}
[/mm]
[mm] =k_{1}x^{3}-2x^{2}=k_{2}x^{3}-2x^{2}|+2x^{2} |:x^{3}
[/mm]
[mm] =k_{1}=k_{2}... [/mm] dies ist ja eine unwahre Aussage, womit das bewiesen sein sollte, oder? ... jedoch habe ich mal den Test im GTR gemacht und doch gemeinsame Punkte gefunden... irgendwie bin ich verwirrt, kann mir jemand helfen?
besten Dank schon mal im Voraus,
Rudy
|
|
|
|
Hallo,
ja der Beweis ist meiner Meinung nach komplett richtig. Bei Schnittpunkten ist es richtig zwei Funktionen gleichzusetzen. Der Rechenweg ist auch richtig.
Und auch wenn ich mehrere Gleichungen mal mit einem Programm plotten lasse, schneiden sich diese Graphen nicht. Bist du sicher, dass du sie richtig in den Pc eingegeben hast!? Klammern setzen etc.. PC sind da manchmal ein bisschen dumm..
Gruß Patrick
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:48 Mo 10.10.2005 | Autor: | Rudy |
Ok, dann werd ich das morgen mal so vorstellen! Danke!
|
|
|
|