www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Kurvenschar, Beweis dass versc
Kurvenschar, Beweis dass versc < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar, Beweis dass versc: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Mo 10.10.2005
Autor: Rudy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Moin, ich habe folgende Kurvenschar:
[mm] \bruch{kx-2}{x^{2}} [/mm]
und soll nun beweisen, dass verschiedene Kurven keine gemeinsamen Punkte haben. Also habe ich erstmal 2 Kurven (keine bestimmten, nur allgemein) gleichgesetzt:
[mm] \bruch{k_{1}x-2}{x^{2}}= \bruch{k_{2}x-2}{x^{2}} [/mm]
Soweit war noch alles klar, nur frage ich mich jetzt, wie ich weiter vorgehen soll. Folgende Lösung hatte ich raus:
[mm] \bruch{k_{1}x-2}{x^{2}}= \bruch{k_{2}x-2}{x^{2}}|*x^{2} [/mm]
[mm] =k_{1}x^{3}-2x^{2}=k_{2}x^{3}-2x^{2}|+2x^{2} |:x^{3} [/mm]
[mm] =k_{1}=k_{2}... [/mm] dies ist ja eine unwahre Aussage, womit das bewiesen sein sollte, oder? ... jedoch habe ich mal den Test im GTR gemacht und doch gemeinsame Punkte gefunden... irgendwie bin ich verwirrt, kann mir jemand helfen?
besten Dank schon mal im Voraus,

Rudy

        
Bezug
Kurvenschar, Beweis dass versc: es stimmt doch..
Status: (Antwort) fertig Status 
Datum: 17:38 Mo 10.10.2005
Autor: XPatrickX

Hallo,


ja der Beweis ist meiner Meinung nach komplett richtig. Bei Schnittpunkten ist es richtig zwei Funktionen gleichzusetzen. Der Rechenweg ist auch richtig.

Und auch wenn ich mehrere Gleichungen mal mit einem Programm plotten lasse, schneiden sich diese Graphen nicht. Bist du sicher, dass du sie richtig in den Pc eingegeben hast!? Klammern setzen etc.. PC sind da manchmal ein bisschen dumm.. ;-)


Gruß Patrick

Bezug
                
Bezug
Kurvenschar, Beweis dass versc: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Mo 10.10.2005
Autor: Rudy

Ok, dann werd ich das morgen mal so vorstellen! Danke!

Bezug
        
Bezug
Kurvenschar, Beweis dass versc: Ergebnis richtig, aber ...
Status: (Antwort) fertig Status 
Datum: 17:59 Mo 10.10.2005
Autor: Loddar

Hallo Rudy,

[willkommenmr] !!


Das Ergebnis ist richtig, aber auf dem Weg dahin hast Du einige Fehler gemacht:


> Folgende Lösung hatte ich raus:
> [mm]\bruch{k_{1}x-2}{x^{2}}= \bruch{k_{2}x-2}{x^{2}}|*x^{2}[/mm]
>  
> [mm]=k_{1}x^{3}-2x^{2}=k_{2}x^{3}-2x^{2}|+2x^{2} |:x^{3}[/mm]


[notok] Das Ergebnis hier lautet ...

[mm] $k_1*x-2 [/mm] \ = \ [mm] k_2*x-2$ [/mm]

[mm] $\gdw$ $k_1*x [/mm] - [mm] k_2*x [/mm] \ = \ 0$

[mm] $\gdw$ $x*\left(k_1 - k_2\right) [/mm] \ = \ 0$

[mm] $\gdw$ [/mm]   $x \ = \ 0$   oder   [mm] $k_1 [/mm] - [mm] k_2 [/mm] \ = \ 0$

[mm] $\gdw$ [/mm]   $x \ = \ 0$  Dies steht im Widerspruch zum Definitionsbereich [mm] $D_x [/mm] \ = \ [mm] \IR [/mm] \ [mm] \backslash [/mm] \ [mm] \{0\}$ [/mm]

oder   [mm] $k_1 [/mm] \ = \ [mm] k_2$ [/mm] Dies steht im Widerspruch zur Annahme mit verschiedenen Kurven mit [mm] $k_1 [/mm] \ [mm] \not= [/mm] \ [mm] k_2$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de