www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Kurvenschar mit e-Funktion
Kurvenschar mit e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar mit e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 Mi 25.02.2009
Autor: Nima

Aufgabe
Gegeben sei die Funktionenschar fa(x) = [mm] \bruch{1}{2} [/mm] x + [mm] ae^{-x} [/mm] , a>0

a) Für welchen Wert von a liegt das Minimum auf der x-Achse?

Hallo ihr da draußen!

Die Aufgabe oben finde ich unlösbar... Ich habe erstmal die erste Ableitung gebildet:

fa'(x) = [mm] \bruch{1}{2} [/mm] - [mm] ae^{-x} [/mm]

Diese habe ich dann 0 gesetzt und nach x aufgelöst:

x = ln(2a)

Dies müsste nun die x-Koordinate des Minimums sein. Die y-Koordinate bekommt man also heraus indem man diesen Wert für x in die Funktion einsetzt:

fa(ln(2a)) = [mm] \bruch{1}{2} [/mm] ln(2a) + [mm] ae^{-ln(2a)} [/mm]

Da das Minimum auf der x-Achse liegen soll, muss die y-Koordinate zwangsweise 0 sein, also habe ich diesen obigen Term gleich 0 gesetzt und komme dann auf a = 0 .

Das ist aber laut Aufgabe gar nicht möglich, denn es soll ja a > 0 gelten...

Könntet ihr da vielleicht weiterhelfen? Das wäre echt toll...

Danke!

        
Bezug
Kurvenschar mit e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 Do 26.02.2009
Autor: rainerS

Hallo!

> Gegeben sei die Funktionenschar [mm]f_a(x) = \bruch{1}{2} x + ae^{-x}[/mm] , $a>0$
>  
> a) Für welchen Wert von a liegt das Minimum auf der x-Achse?
>  Hallo ihr da draußen!
>  
> Die Aufgabe oben finde ich unlösbar... Ich habe erstmal die
> erste Ableitung gebildet:
>  
> [mm]f_a'(x) = \bruch{1}{2} - ae^{-x}[/mm]
>  
> Diese habe ich dann 0 gesetzt und nach x aufgelöst:
>  
> $x = [mm] \ln(2a)$ [/mm]

[ok]

> Dies müsste nun die x-Koordinate des Minimums sein. Die
> y-Koordinate bekommt man also heraus indem man diesen Wert
> für x in die Funktion einsetzt:
>  
> [mm]f_a(\ln(2a)) = \bruch{1}{2}\ln(2a) + ae^{-\ln(2a)}[/mm]

[ok]

> Da das Minimum auf der x-Achse liegen soll, muss die
> y-Koordinate zwangsweise 0 sein, also habe ich diesen
> obigen Term gleich 0 gesetzt

Richtig.

> und komme dann auf a = 0 .

Da hast du dich verrechnet. Ich würde sagen, du hast [mm] $\bruch{1}{2}\ln(2a) \red{-} ae^{-\ln(2a)}$ [/mm] statt [mm] $\bruch{1}{2}\ln(2a) [/mm] + [mm] ae^{-\ln(2a)}$ [/mm] genommen.

Viele Grüße
   Rainer

Bezug
                
Bezug
Kurvenschar mit e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Do 26.02.2009
Autor: Nima

Leider nein, ich habe die y-Koordinate gleich 0 gesetzt:

[mm] \bruch{1}{2} [/mm] ln(2a) + [mm] ae^{-ln(2a)} [/mm] = 0

Dann habe ich ausgeklammert:

a ( [mm] \bruch{1}{2} [/mm] ln2 + [mm] e^{-ln(2a)} [/mm] ) = 0

Ich bin dann so auf a = 0 gekommen, bin mir aber nicht sicher ob man hier a überhaupt ausklammern kann. Falls nicht, wie sollte man dann weiterrechnen? Einen Rechenweg sehe ich hier nicht...

Bezug
                        
Bezug
Kurvenschar mit e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:26 Do 26.02.2009
Autor: Blech

Hi,

> Dann habe ich ausgeklammert:
>  
> a ( [mm]\bruch{1}{2}[/mm] ln2 + [mm]e^{-ln(2a)}[/mm] ) = 0
>  
> Ich bin dann so auf a = 0 gekommen, bin mir aber nicht
> sicher ob man hier a überhaupt ausklammern kann. Falls

Nein. Dann müßte ja [mm] $\ln(2a)=a\ln(2)$ [/mm] sein. Wenn das der Fall wäre, wäre das Leben viel einfacher (oder auch nicht. Die entstehenden Widersprüche würden die Mathematik nutzlos machen, und wir säßen noch in unseren Höllen ohne Internetanschluß)

[mm] $\ln(2a)=\ln(2)+\ln(a)$ [/mm] ging höchstens, hilft hier aber nicht weiter.


> nicht, wie sollte man dann weiterrechnen? Einen Rechenweg
> sehe ich hier nicht...

[mm] $e^{-\ln(2a)}=e^{\ln\left(\frac{1}{2a}\right)}=\frac{1}{2a}$ [/mm]

bzw. [mm] $e^{-\ln(2a)}=\left(e^{\ln(2a)}\right)^{-1}=(2a)^{-1}$, [/mm]
ist nicht ganz so fitzelig klein und führt (natürlich) auf's gleiche.

ciao
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de