www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Kurze Frage
Kurze Frage < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurze Frage: Erklärung
Status: (Frage) beantwortet Status 
Datum: 21:39 Mi 02.03.2011
Autor: SolRakt

Hallo, habe mal kurz eine Frage zu den komplexen Zahlen. Und zwar:

1+i sei die komplexe Zahl

Wie bringe ich das jetzt in die Form mit cos und sin? Ich weiß, dass der Betrag [mm] \wurzel{2} [/mm] ist. Aber wie finde ich heraus, was im Argument des sin und cos steht? So muss das ja nachher aussehn:

[mm] 1+i=\wurzel{2}[cos(...)+i(sin(...))] [/mm]

Danke sehr. Gruß





        
Bezug
Kurze Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 02.03.2011
Autor: kamaleonti

Hallo SolRakt,
> Hallo, habe mal kurz eine Frage zu den komplexen Zahlen.
> Und zwar:
>  
> 1+i sei die komplexe Zahl
>  
> Wie bringe ich das jetzt in die Form mit cos und sin? Ich
> weiß, dass der Betrag [mm]\wurzel{2}[/mm] ist. Aber wie finde ich
> heraus, was im Argument des sin und cos steht? So muss das
> ja nachher aussehn:

Ganz allgemein eine Übersicht bei []Wikipedia. Gibt leider einige Fallunterscheidungen.

>  
> [mm]1+i=\wurzel{2}[cos(...)+i(sin(...))][/mm]

z=a+bi
Dann ist die Polarkoordinatendarstellung von z entweder
[mm] \qquad $\|z\|\left(\cos\varphi+\sin\varphi i\right)$ \qquad [/mm] oder [mm] $\|z\|e^{i\varphi}$ [/mm]
wobei [mm] \varphi=\arctan{\frac{a}{b}} [/mm] (speziell in diesem Fall a=1, b=1).
Dabei ist [mm] \arctan{\frac{1}{1}}=\frac{\pi}{4} [/mm]

>  
> Danke sehr. Gruß
>  
>

Gruß

Bezug
        
Bezug
Kurze Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mi 02.03.2011
Autor: schachuzipus

Hallo SolRakt,

kurze Ergänzung:

bei derart "einfachen" komplexen Zahlen wie [mm]z=1+i[/mm] kann man das Argument ohne jegliche Rechnung und ohne dass ein Korrektor meckert, im Koordinatensystem ablesen.

Wenn du mal [mm]1+i[/mm] einzeichnest, so liegt das doch auf der 1.Winkelhalbierenden und im 1.Quadranten.

Und die schließt mit der x-Achse welchen Winkel ein? ...

Also [mm]\operatorname{arg}(1+i)=\frac{\pi}{4}[/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Kurze Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:05 Mi 02.03.2011
Autor: SolRakt

Ich danke euch beiden. :) Habt mir sehr geholfen ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de