L-R-Zerlegung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:08 So 27.01.2008 | Autor: | chipbit |
Aufgabe | Für i,j=1,...,n, [mm] i\not= [/mm] j und [mm] \lambda \in \IK [/mm] sei die lineare Abbildung [mm] Q_i^j (\lambda):\IK^n \to \IK^n [/mm] definiert durch [mm] Q_i^j (\lambda)(x)=x+ \lambda x_j e_i, [/mm] wobei [mm] x=(x_1,...,x_n)\in \IK^n [/mm] und [mm] {e_1,...,e_n} [/mm] die kanonische Basis des [mm] \IK^n [/mm] sei.
i) Berechnen Sie bezüglich der kanonischen Basis die darstellende Matrix der Abbildung, die wir wieder mit [mm] Q_i^j(\lambda) [/mm] bezeichnen. Überlegen Sie, was das Ergebnis der Multiplikation einer Matrix [mm] A\in M(n,\IK) [/mm] von links mit [mm] Q_i^j(\lambda) [/mm] ist.
ii) Warum ist [mm] Q_i^j(\lambda) [/mm] invertierbar?
iii) Sei A invertierbar und der Gaußalgorithmus ohne Zeilenvertauschung durchführbar. Zeigen Sie, daß eine untere Dreiecksmatrix [mm] L\in GL(n,\IK) [/mm] mit det L=1 und einer oberen Dreiecksmatrix [mm] R\in GL(n,\IK) [/mm] existieren, so daß gilt [mm] A=L\*R. [/mm] |
Hallo,
mein erstes Problem bei dieser Aufgabe ist, die darstellende Matrix. Ich bekomme das irgendwie nicht auf die Reihe. der zweite Teil von i), also das mit der Multiplikation von links ist an sich ja unproblematisch. Das ich das mit der darstellenden Matrix nicht hinbekommen, liegt vielleicht daran, das ich mir vielleicht einfach nicht vorstellen kann was diese lineare Abbildung macht bzw. ich nicht genau verstehe wie man eine darstellende Matrix berechnet.
Zu ii) kann ich hier eigentlich verwenden, das eine Matrix invertierbar ist, wenn ihre Determinante [mm] \not=0 [/mm] ist? Oder wie muss man das dann machen?
Mit iii) habe ich mich noch nicht wirklich beschäftigt, wollte lieber erstmal die anderen beiden Teilaufgaben haben bevor ich mich da dran mache, aber falls wer schon einen Hinweis oder Tipp zu dieser Aufgabe hat, wäre ich natürlich schon sehr dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:24 So 27.01.2008 | Autor: | leduart |
Hallo
die darstellende matrix hat einfach als Spalten die Bilder der Basisvektoren.
Also schreibs mal für [mm] K^3 [/mm] auf, und du siehst wie es geht.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 22:21 So 27.01.2008 | Autor: | chipbit |
Mh, also wir hatten dazu schon mal was, unter den gleichen Voraussetzungen nur statt [mm] Q_i^j [/mm] hatten wir [mm] P_i^j(x)=x+(x_j-x_i)e_i+(x_i-x_j)e_j [/mm] . Da haben wir dann [mm] P_i^j(e_k)= e_k+(0-0)e_i+(0-0)e_j=e_k [/mm] ,
[mm] k\not=j,i: P_i^j(e_j)=e_j+(1-0)e_i+(0-1)e_j=e_i
[/mm]
[mm] P_i^j(e_i)=e_i+(0-1)e_i+(1-0)e_j=e_j [/mm] .
Wenn ich das was wir da gemacht haben, mit dem Q mache, dann komme ich auf: [mm] Q_i^j(\lambda)(e_i)=e_i+ \lambda [/mm] 0 [mm] e_i=e_i
[/mm]
und [mm] Q_i^j(\lambda)(e_j)=e_j+ \lambda 1e_i= e_j+\lambda e_i [/mm] .
Ist das so richtig? Sagt mir das jetzt das in der Matrix an der i-ten Stelle alles so bleibt, aber an der j-ten Stelle [mm] \lambda [/mm] (i-te Stelle) dazu addiert werden muss? Oder wie muss man das interpretieren?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Di 29.01.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|