www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS
LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Do 11.09.2008
Autor: Zuggel

Aufgabe
Untersuchen Sie die Lösungen des LGS mit den Unbekannten x,y,z und w mit den in [mm] \IR [/mm] variierenden Paramtern [mm] \alpha [/mm] und [mm] \beta [/mm]

[mm] \alpha x+\beta [/mm] y-z=1
x+z=3
[mm] \alpha [/mm] x + [mm] \beta [/mm] y= [mm] \beta [/mm]
[mm] \alpha [/mm] z + [mm] \beta [/mm] w= [mm] \beta [/mm]

Hallo alle zusammen!

Also das ist eine Aufgabe welche isch gelöst habe, jedoch über das Ergebnis des Professors etwas unentschlossen bin.

Also zuerst bringe ich x in Ausdruck von z, x= 3-z

Eingesetzt in meine anderen 3 Gleichungen:

[mm] \beta*y+z*(-1-\alpha)=1-3*\alpha [/mm]
[mm] \beta*y-\alpha*z= \beta -3*\alpha [/mm]
[mm] \alpha [/mm] z + [mm] \beta [/mm] w = [mm] \beta [/mm]

Nun mit Gauss:

[mm] \beta [/mm] y + [mm] z*(-1-\alpha) [/mm] = [mm] 1-3*\alpha [/mm]
[mm] -\beta*y [/mm] + [mm] \alpha*z=3*\alpha [/mm] - [mm] \beta [/mm]
= -z = [mm] 1-\beta [/mm]

[mm] \alpha* [/mm] (-z = [mm] 1-\beta) [/mm]
[mm] \alpha [/mm] z + [mm] \beta [/mm] w = [mm] \beta [/mm]
= [mm] \beta [/mm] w = [mm] \alpha [/mm] - [mm] \beta*\alpha [/mm] + [mm] \beta [/mm]

Nun meine Lösung war:

[mm] \beta [/mm] w = [mm] \alpha [/mm] - [mm] \beta*(\alpha [/mm] + 1)

für [mm] \beta=0 [/mm] habe ich folgendes:

0 = [mm] \alpha [/mm]

Also habe ich keine Lösung für [mm] \alpha \not= [/mm] 0
Ich habe [mm] \infty^{1} [/mm] Lösungen für [mm] \beta [/mm] = 0 und [mm] \alpha [/mm] = 0
Und eine Lösung für [mm] \beta \not=0 (\exists! [/mm] := existiert eine Lösung, oder?)

Laut Lösung, hat das System aber mit [mm] \beta [/mm] = 0 und [mm] \alpha=0 [/mm] :  [mm] \infty^{2} [/mm]  Lösungen. Ich verstehe nicht wieso. Es müssten dann ja 2 Unbekannte durch einen Parameter ersetzt werden und damit das System gelöst werden. Aber hier ist doch nur der Fall wo wir 0*w=0 hatten.

Ich würde hier w=t mit t [mm] \in \IR [/mm] wählen und damit das System lösen, das ist aber nicht richtig. Wieso nicht?
Als Begründung wird angegeben, dass es 2 Paramter gibt. Aber wie gesagt, die Parameter [mm] \alpha [/mm] und [mm] \beta [/mm] spielen hier doch keine Rolle mehr, da sie bereits gewählt wurden (sonst wäre ich ja nicht auf die Lösung [mm] \infty [/mm] gekommen)

Dankeschön
lg
Zuggel

        
Bezug
LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Do 11.09.2008
Autor: Arralune

Erstmal die Randfrage: [mm]\exists![/mm] Bedeutet: Es existiert genau eine Lösung.

Ansonsten hat dein Professor Recht:
Wenn du [mm]\alpha = 0, \quad \beta = 0[/mm] in das Gleichungssystem einsetzt erhälst du:
[mm]-z=1[/mm]
[mm]x+z=3[/mm]
[mm]0=0[/mm]
[mm]0=0[/mm]
Also z = -1, x = 4. y und w können beliebig gewählt werden, da sie in den Gleichungen gar nicht mehr vorkommen.
Dein Fehler liegt darin, dass du dir nicht Gleichungen für alle Variablen aufgeschrieben hast, für y gilt ja nach deinem Gaussumformungsschritt:
[mm]\beta * y = 1 - 3 * \alpha + z (1 + \alpha)[/mm]
Ist [mm]\beta[/mm] nun aber 0, so ist y nicht durch diese Gleichung eindeutig bestimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de