www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS 2 Gl 3 Unbekannte - Gauss
LGS 2 Gl 3 Unbekannte - Gauss < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS 2 Gl 3 Unbekannte - Gauss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Do 15.06.2006
Autor: Tea

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hi!

Ich soll die Lösung für [mm] \pmat{1 & 1 & -2 & | -4 \\ 2 & 2 & -1 & | -1} [/mm] finden.

Mein Ansatz:

[mm] \pmat{1 & 1 & -2 & | -4 \\ 2 & 2 & -1 & | -1} [/mm] --> (1.Zeile * (-2), 1.+2.)

[mm] \pmat{1 & 1 & -2 & | -4 \\ 0 & 0 & 3 & | -9} [/mm] --> [mm] x_{3}=-3 [/mm]

Jetzt komm ich aber nicht mehr weiter weil ich ja zwei identische Zeilen mit mindestens 2 Unbekannten habe.

Ich kann ja jetzt für x1 oder x1 was wählen, aber wie genau läuft das ab ?

Sorry, hab echt keine Ahnung....

Vielen Dank!

        
Bezug
LGS 2 Gl 3 Unbekannte - Gauss: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Fr 16.06.2006
Autor: Zaed

Hallo Tea, ...

das ist eigentlich recht einfach. Du hast also

[mm] \pmat{ 1 & 1 & -2 \\ 2 & 2 & -1} x = \pmat{ -4 \\ -1 } , x \in \IR^{3} [/mm]

Nun wendest du GAUSS darauf an, und erhälst folgendes (Da hast du z.B. einen Rechenfehler gemacht -> (-2)(-4) - 1 = 8 - 1 = 7

Du erhälst also

[mm] \pmat{ 1 & 1 & -2 \\ 0 & 0 & 3}x = \pmat{ -4 \\ 7} , x \in \IR^{3} [/mm]

Nun weist du zweilerlei Sachen:
1. Der Rang deiner Koeffizientenmatrix ist 2 und daraus folgt, dass dein Gleichungssystem einen freien Parameter hat

2. [mm] x_{3} = \bruch{7}{3} [/mm]

Wir wählen unser [mm] x_{1} = a [/mm] als freien Parameter und erhalten somit

[mm] a + x_{2} - \bruch{14}{3} = -4 [/mm]
daraus folgt nun: [mm] x_{2} = \bruch{2}{3} - a [/mm]

Als Lösungsmenge kannst du das auch so schreiben:

[mm] L = \{ \pmat{ a \\ \bruch{2}{3} - a \\ \bruch{7}{3}} , a \in \IR \} [/mm]

D.h. du hast unendlich viele Lösungen. Die obere Form stellt dir diese mittels dem a (freien Parameter) dar.

Ich hoffe du verstehst diese Rechnung und sie hilft dir damit weiter

mfG Zaed

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de