www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS Lösungsmenge, Geometrie
LGS Lösungsmenge, Geometrie < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS Lösungsmenge, Geometrie: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:26 Do 25.04.2013
Autor: DragoNru

Aufgabe
Ermitteln Sie die Lösungsmenge des linearen Gleichungssystems und deuten Sie diese Menge geometrisch.

d)

[mm] x_{1} [/mm] + [mm] 2x_{2} [/mm] + [mm] 3x_{3} [/mm] = 1
[mm] 4x_{1} [/mm] + [mm] 5x_{2} [/mm] + [mm] 6x_{3} [/mm] = 2
[mm] 7x_{1} [/mm] + [mm] 8x_{2} [/mm] + [mm] 9x_{3} [/mm] = 3
[mm] 5x_{1} [/mm] + [mm] 7x_{2} [/mm] + [mm] 9x_{3} [/mm] = 3

e)

[mm] x_{1} [/mm] + [mm] 2x_{2} [/mm] - [mm] x_{3} [/mm] = 0
[mm] x_{1} [/mm] - [mm] 2x_{2} [/mm] + [mm] x_{3} [/mm] = -3
             [mm] 4x_{2} [/mm] -  [mm] x_{3} [/mm] = 3
[mm] 5x_{1} [/mm] - [mm] 2x_{2} [/mm] + [mm] x_{3} [/mm] = -9

f)

[mm] x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] x_{3} [/mm] = 2

Nabend,

Kriegs einfach nicht hin d) zu lösen. Habe bis jetzt rausbekommen, dass man eine ganze Zeile eliminieren kann. Daraus schließt man doch, das es viele Lösungen für [mm] x_{1}, x_{2}, x_{3} [/mm] gibt.
Kann mir bitte jemand einen Ansatz zeigen, wie man vorgehen sollte?

Gruß

        
Bezug
LGS Lösungsmenge, Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Do 25.04.2013
Autor: Diophant

Hallo,

> Ermitteln Sie die Lösungsmenge des linearen
> Gleichungssystems und deuten Sie diese Menge geometrisch.

>

> d)

>

> [mm]x_{1}[/mm] + [mm]2x_{2}[/mm] + [mm]3x_{3}[/mm] = 1
> [mm]4x_{1}[/mm] + [mm]5x_{2}[/mm] + [mm]6x_{3}[/mm] = 2
> [mm]7x_{1}[/mm] + [mm]8x_{2}[/mm] + [mm]9x_{3}[/mm] = 3
> [mm]5x_{1}[/mm] + [mm]7x_{2}[/mm] + [mm]9x_{3}[/mm] = 3

>

> e)

>

> [mm]x_{1}[/mm] + [mm]2x_{2}[/mm] - [mm]x_{3}[/mm] = 0
> [mm]x_{1}[/mm] - [mm]2x_{2}[/mm] + [mm]x_{3}[/mm] = -3
> [mm]4x_{2}[/mm] - [mm]x_{3}[/mm] = 3
> [mm]5x_{1}[/mm] - [mm]2x_{2}[/mm] + [mm]x_{3}[/mm] = -9

>

> f)

>

> [mm]x_{1}[/mm] + [mm]x_{2}[/mm] + [mm]x_{3}[/mm] = 2
> Nabend,

>

> Kriegs einfach nicht hin d) zu lösen. Habe bis jetzt
> rausbekommen, dass man eine ganze Zeile eliminieren kann.

Ja, das springt ja ins Auge: I+II=IV.

> Daraus schließt man doch, das es viele Lösungen für
> [mm]x_{1}, x_{2}, x_{3}[/mm] gibt.

Das nun ist völlig falsch. Daraus schließt man zunächst, dass man das ganze auf ein 3x3-LGS zurückführen kann. Dort würde man doch zunächst mal eine eindeutige Lösung erwarten, sofern nicht weitere lineare Abhängigkeiten enthalten sind.

Löse das aus den Zeilen I-III gebildete LGS mit dem Gauß-Verfahren, dann siehst du sicherlich klarer.


Gruß, Diophant

Bezug
                
Bezug
LGS Lösungsmenge, Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Do 25.04.2013
Autor: DragoNru

Bekomme da für die III Zeile nur 0 raus. Hab versucht aus der Hauptdiagonalen nur 1 zu machen und die anderen werte zur 0, dann wäre hinterm Gleichzeichen das Ergebnis, aber klappt irgendwie nicht.

1  2  3  =  1  /*4-II  /*7-III
4  5  6  =  2
7  8  9  =  3

1  2  3  =  1
0 -3 -6  = -2  /:(-3)
0 -6-12  = -4  /:(-12)

1  2  3  =  1
0  1  2  =  2/3 /*(-2)+I  /*(-1/2)+III
0  1/2 1 = 1/3

1  0 -1  = -1/3
0  1  2  = 2/3
0  0  0  =  0

Hab ich hier schon irgendwo ein Fehler, weil es mir nicht klarer gewordne ist ? :D oder ich hab einfach kein Auge dafür

Bezug
                        
Bezug
LGS Lösungsmenge, Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Do 25.04.2013
Autor: Diophant

Hallo,

> Bekomme da für die III Zeile nur 0 raus. Hab versucht aus
> der Hauptdiagonalen nur 1 zu machen und die anderen werte
> zur 0, dann wäre hinterm Gleichzeichen das Ergebnis, aber
> klappt irgendwie nicht.

>

> 1 2 3 = 1 /*4-II /*7-III
> 4 5 6 = 2
> 7 8 9 = 3

>

> 1 2 3 = 1
> 0 -3 -6 = -2 /:(-3)

Schon diese Zeile ist falsch, du wirst ab hier nochmals neu rechnen müssen. Wenn du das rechnest, was du oben kommentiert hast, müsste die zweite Zeile bspw.

0 3 9 = 2

heißen.

EDIT:
Nein, da habe ich mich vertan, deine Rechnung ist wohl richtig. Entschuldige bitte vielmals!


Gruß, Diophant

Bezug
                                
Bezug
LGS Lösungsmenge, Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Do 25.04.2013
Autor: DragoNru

puh... frage morgen mein Prof. Aber danke dir, jetzt weiß ich zumindestens, wo der Fehler ist.

Bezug
                                        
Bezug
LGS Lösungsmenge, Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Do 25.04.2013
Autor: Steffi21

Hallo, wer verzweifelt denn hier

[mm] \pmat{ 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 2 \\ 7 & 8 & 9 & 3} [/mm]

bilde eine neue 2. Zeile: 4 mal Zeile 1 minus Zeile 2
bilde eine neue 3. Zeile: 7 mal Zeile 1 minus Zeile 3

[mm] \pmat{ 1 & 2 & 3 & 1 \\ 0 & 3 & 6 & 2 \\ 0 & 6 & 12 & 4} [/mm]

bilde eine neue 3. Zeile: 2 mal Zeile 2 minus Zeile 3

[mm] \pmat{ 1 & 2 & 3 & 1 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & 0 & 0} [/mm]

es läuft also auf eine Parameterlösung hinaus, setze [mm] x_3=p [/mm]

Steffi




Bezug
                                                
Bezug
LGS Lösungsmenge, Geometrie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Do 25.04.2013
Autor: DragoNru

ah vielen dank. Wusste nicht, dass man es Parameterlösung nennt.
Jetzt hab ich etwas zu googlen ;)

Bezug
        
Bezug
LGS Lösungsmenge, Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Mo 29.04.2013
Autor: DragoNru

Moin moin,

jetzt gehts um die f) [mm] x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] x_{3} [/mm] = 2

Für mein ungeschultes Auge sieht das aus, als müsste man hier mit der Parameter Lösung vorgehen. Habs mal versucht

[mm] x_{3} [/mm] = [mm] \lambda [/mm]
[mm] x_{2} [/mm] = [mm] \mu [/mm]
[mm] x_{1} [/mm] = 2 - [mm] \lambda [/mm] - [mm] \mu [/mm]

[mm] \vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] = [mm] \vektor{2 - \mu - \lambda \\ 0+\mu+0 \\ 0+0+\lambda} [/mm] = [mm] \vektor{2 \\ 0 \\ 0} [/mm] + [mm] \vektor{-\mu \\ \mu \\ 0} [/mm] + [mm] \vektor{-\lambda \\ 0 \\ \lambda} [/mm] = [mm] \vektor{2 \\ 0 \\ 0} +\mu \vektor{-1 \\ 1 \\ 0} [/mm] + [mm] \lambda\vektor{-1 \\ 0 \\ 1}, [/mm] eine Ebene im [mm] R^3 [/mm]

ist das so richtig?

Gruß

Bezug
                
Bezug
LGS Lösungsmenge, Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Mo 29.04.2013
Autor: Al-Chwarizmi


> Moin moin,
>  
> jetzt gehts um die f) [mm]x_{1}[/mm] + [mm]x_{2}[/mm] + [mm]x_{3}[/mm] = 2
>  
> Für mein ungeschultes Auge sieht das aus, als müsste man
> hier mit der Parameter Lösung vorgehen. Habs mal versucht
>  
> [mm]x_{3}[/mm] = [mm]\lambda[/mm]
>  [mm]x_{2}[/mm] = [mm]\mu[/mm]
>  [mm]x_{1}[/mm] = 2 - [mm]\lambda[/mm] - [mm]\mu[/mm]
>  
> [mm]\vektor{x_{1} \\ x_{2} \\ x_{3}}[/mm] = [mm]\vektor{2 - \mu - \lambda \\ 0+\mu+0 \\ 0+0+\lambda}[/mm]
> = [mm]\vektor{2 \\ 0 \\ 0}[/mm] + [mm]\vektor{-\mu \\ \mu \\ 0}[/mm] +
> [mm]\vektor{-\lambda \\ 0 \\ \lambda}[/mm] = [mm]\vektor{2 \\ 0 \\ 0} +\mu \vektor{-1 \\ 1 \\ 0}[/mm]
> + [mm]\lambda\vektor{-1 \\ 0 \\ 1},[/mm] eine Ebene im [mm]R^3[/mm]
>  
> ist das so richtig?


Ja. Aber:

Anstatt nur zu sagen, es handle sich um (irgendeine)
Ebene, solltest du wohl doch die Lage dieser Ebene
im Raum präzise beschreiben.

LG ,  Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de