www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - LGS bei Lage von 2 Geraden
LGS bei Lage von 2 Geraden < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS bei Lage von 2 Geraden: Geraden im Raum
Status: (Frage) beantwortet Status 
Datum: 16:44 Sa 20.10.2007
Autor: Mamoe

Aufgabe
gerade 1      [mm] \vektor{2 \\ 1 \\ 2 } [/mm] + s * [mm] \vektor{1 \\ 3 \\ 0 } [/mm]
gerade 2        [mm] \vektor{6 \\ 2 \\ 4 } [/mm] + t * [mm] \vektor{11 \\ 0 \\ 6 } [/mm]

Hallo zusammen, ich mache gerade diese Aufgabe und weiß auch schon was laut Buch herauskommen soll. Jedoch gibt dieses Ergebnis für mich garkein Sinn. Da die Richtungsvektoren ja lin unabhängig sind muss es entweder einen Schnittpunkt geben oder sie müssen windschief sein. Dann hab ich beide Geraden gleichgesetzt und ein LGS gemacht. Da kommt bei mir s= - 1/3     und t = - 1/6  heraus. das muss aber falsch sein laut diesem Buch. Kann mir jdm helfen?

eine frage noch: hab ich das richtig vertstanden, dass man bei dem LGS die I und II Gleichung auflösen muss und in die dritte einsetzen? wenn dann etwas wahres rauskommt gibt es einen schnittpunkt und wenn etwas falsches herauskommt dann sind sie windschief???


Danke schonmal und noch ein schönes Wochenende=)

        
Bezug
LGS bei Lage von 2 Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Sa 20.10.2007
Autor: barsch

Hi,

du kannst folgendes machen:

[mm] g_1= \vektor{2 \\ 1 \\ 2 }+s\cdot{}\vektor{1 \\ 3 \\ 0 } [/mm]

[mm] g_2=\vektor{6 \\ 2 \\ 4 }+t*\vektor{11 \\ 0 \\ 6 } [/mm]


Du kannst [mm] g_1=g_2 [/mm] setzen:

[mm] \vektor{2 \\ 1 \\ 2 }+s\cdot{}\vektor{1 \\ 3 \\ 0 }=\vektor{6 \\ 2 \\ 4 }+t*\vektor{11 \\ 0 \\ 6 } [/mm]

Exisitert ein eindeutiges s und ein eindeutiges t, das die Gleichung erfüllt, dann haben die Geraden [mm] g_1 [/mm] und [mm] g_2 [/mm] einen Schnittpunkt (den kannst du berechnen, indem du s in [mm] g_1 [/mm] oder t in [mm] g_2 [/mm] einsetzt.)

Wollen wir das einmal kurz an der Aufgabe berechnen.

Du hast ja dann Zeile für Zeile folgendes da stehen:

i)   [mm] 2+s=6+11\cdot{}t [/mm]

ii)  [mm] 1+3\cdot{}s=2 [/mm]

iii) [mm] 2=4+6\cdot{}t [/mm]

die zweite Gleichung enthält nur ein s; stellen wir sie nach s um, erhalten wir einen Wert für s:

ii)  [mm] 1+3\cdot{}s=2 [/mm]  wir erhalten [mm] s=\bruch{1}{3} [/mm]  (wie kommst du auf [mm] \red{-}\bruch{1}{3} [/mm] ?)

Die dritte Gleichung stellen wir nach t um:

iii) [mm] 2=4+6\cdot{}t [/mm]  wir erhalten [mm] t=-\bruch{1}{3} [/mm] (hier hast du dich verrechnet! )

wenn der Wert für t und s die erste Gleichung (i) lösen, dann exisitert ein Schnittpunkt der beiden Geraden. Lösen t und s nicht die erste Gleichung, sind die Geraden windschief.

Setzen wir [mm] t=-\bruch{1}{3} [/mm] und [mm] s=\bruch{1}{3} [/mm] ein:

i) [mm] 2+\bruch{1}{3}=6+11\cdot{}(-\bruch{1}{3}) [/mm]

wir erhalten: [mm] \bruch{7}{3}=\bruch{7}{3} [/mm]

Fazit: [mm] g_1 [/mm] und [mm] g_2 [/mm] haben einen Schnittpunkt.

Insgesamt hört sich deine Vorgehensweise gut an. Du hast dich eben verrechnet. Die Hauptsache ist jedoch - in erster Linie - es zu verstehen; und du scheinst es verstanden zu haben.

> Danke schonmal und noch ein schönes Wochenende=)

ebenso.

MfG barsch



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de