www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - LGS lösen
LGS lösen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Mi 18.02.2015
Autor: abi15

Aufgabe
Lösen Sie das LGS
[mm] \vmat{ 0 = a + b + c \\ 0,125 = 0,125a + 0,25b + 0,5c \\ -2 = 6a + 2b } [/mm]

Hallo, ich versuche schon seit einer Stunde das LGS zu lösen, mache aber jedes Mal etwas falsch.
Ich versuche 2b zu eliminieren, um den Wert für a zu erhalten. Dafür nehme ich die erste Gleichung mal 2 und ziehe danach die dritte davon ab. Heraus kommt:
2 = -4a , weil 0 * 2 - (-2) = 2 und 2a - 6a = -4a
dann teile ich durch (-4) und erhalte für a = [mm] -\bruch{1}{2} [/mm]
In den Lösungen ist a = - [mm] \bruch{1}{3} [/mm]
Deswegen habe ich versucht b mithilfe der zweiten Gleichung zu eliminieren, indem ich die zweite mal 2 und die dritte mal 0,25 nehme und dann voneinander abziehe. Hierbei bekomme ich heraus:
0,75 = -1,25a, weil 0,125*2 - (-2*0,25) = 0,75 und 0,125*2 - 6a*0,25 = -1,25a. Dann teile ich durch -1,25 und erhalte a= -0,6
Da beides nicht richtig ist, frage ich mich wo mein Denkfehler liegt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LGS lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Mi 18.02.2015
Autor: angela.h.b.


> Lösen Sie das LGS
>  [mm]\vmat{ 0 = a + b + c \\ 0,125 = 0,125a + 0,25b + 0,5c \\ -2 = 6a + 2b }[/mm]
>  
> Hallo, ich versuche schon seit einer Stunde das LGS zu
> lösen, mache aber jedes Mal etwas falsch.
> Ich versuche 2b zu eliminieren, um den Wert für a zu
> erhalten. Dafür nehme ich die erste Gleichung mal 2 und
> ziehe danach die dritte davon ab. Heraus kommt:
> 2 = -4a ,

Hallo,

nein.

Du hast Dir in der ersten Gleichung das c fortgeträumt.
Es ist aber da.


> weil 0 * 2 - (-2) = 2 und 2a - 6a = -4a
>  dann teile ich durch (-4) und erhalte für a =
> [mm]-\bruch{1}{2}[/mm]
>  In den Lösungen ist a = - [mm]\bruch{1}{3}[/mm]
>  Deswegen habe ich versucht b mithilfe der zweiten
> Gleichung zu eliminieren, indem ich die zweite mal 2 und
> die dritte mal 0,25 nehme und dann voneinander abziehe.
> Hierbei bekomme ich heraus:
>  0,75 = -1,25a, weil 0,125*2 - (-2*0,25) = 0,75 und 0,125*2
> - 6a*0,25 = -1,25a. Dann teile ich durch -1,25 und erhalte
> a= -0,6
>  Da beides nicht richtig ist, frage ich mich wo mein
> Denkfehler liegt?

Auch hier hast Du das c fortgeträumt.


Eine einfache Möglicheit, das System zu lösen, wäre diese:

löse Gleichung 3 nach b auf,

setze dieses b in Gleichung 1 und 2 ein.
Da behältst zwei Gleichungen mit den Variablen a und c.

Löse nun dieses kleine LGS und setze am Ende in b ein.

LG Angela




>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
LGS lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Do 19.02.2015
Autor: M.Rex

Hallo

Wenn du hier die Reihenfolge umsortierst, kannst du quasi fast direkt das Gauß-Verfahren nutzen, das solltest du dir generell aneignen, um solche linearen Gleichungssysteme zu lösen.

$ [mm] \vmat{ 0 = a + b + c \\ 0,125 = 0,125a + 0,25b + 0,5c \\ -2 = 6a + 2b } [/mm] $
Umsortieren der Variablenreihenfolge
$ [mm] \vmat{ 0 = c+b+a \\ 0,125 = 0,5c +0,25b +0,125a\\ -2 = 2b+6a  } [/mm] $
Gleichung II mit 2 multiplizieren, und GleichungIII durch 2 teilen
$ [mm] \vmat{ 0 = c+b+a \\ 0,25 = c +0,5b +0,25a\\ -1 = b+3a  } [/mm] $
Gleichung I - Gleichung II
$ [mm] \vmat{ 0 = c+b+a \\ -0,25 = 0,5b +0,75a\\ -1 = b+3a  } [/mm] $
Gleichung II mit 2 multiplizieren
$ [mm] \vmat{ 0 = c+b+a \\ -0,5 = b +1,5a\\ -1 = b+3a  } [/mm] $
Nun kannst du Gleichung II - Gleichung III rechnen, und hast in Gleichung II nur noch das a.

Diese Gleichungen sehen mir nach einer Steckbriefaufgabe aus, bei diesen Aufgaben macht es meiner Meinung nach meist Sinn, die Variablen "absteigend ihrer Potenz" zu ordnen, denn meist hast du auch Ableitungen im Spiel bei denen einige Variablen, die zu einer tiefen Potenz gehören, wegfallen. Außerdem sind die Koeffizienten bei "tiefen Variablen" meist kleiner und damit einfacher zu berechnen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de