www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS und inverse Matrix
LGS und inverse Matrix < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS und inverse Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Sa 18.11.2006
Autor: iglg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir jemand erklären, durch welche weiteren Schritte man mit Hilfe der inversen Matrix der Koeffizienten-Matrix A zu den expliziten Lösungen des Gleichungssystems kommt ?

x = [mm]\begin{matrix} a11 & a12 & a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{matrix}[/mm] * b

ist mir bekannt, aber wie kommt man konkret zu den Werten von z.B. x1, x2 und x3.

(Die Matrix sei schon die inverse Matrix der Koeffizientenmatrix)

Muss man die Determinate der Matrix bilden und mit b multiplizieren ?  Ich bekomme da nicht den Zusammenhang hin.

Bisher habe ich immer Gauss benutzt, aber diesmal ist der Weg über die inverse Matrix gefragt.

Danke für die Hilfe !



        
Bezug
LGS und inverse Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Sa 18.11.2006
Autor: Riley

Hi,
wenn du dieses LGS hast: Ax=b, dann kannst du ja mit der Inversen multilpizieren:
x= [mm] A^{-1}b [/mm] (hast du ja auch schon gemacht).
Um auf den Lösungsvektor zu kommen, sollte das jetzt nur eine Matrix-Vektor-Multiplikation sein:

x= [mm] A^{-1}b [/mm] = [mm] \pmat{ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} } \vektor{b_1 \\ b_2 \\ b_3} =\vektor{a_{11}b_1 +a_{12} b_2 +a_{13} b_3 \\ a_{21}b_1+a_{22}b_2+a_{23}b_3\\a_{31}b_1+a_{32}b_2+a_{33}b_3}=\vektor{x_1 \\ x_2 \\ x_3} [/mm]

also immer nach dem prinzip "zeile mal spalte".
Die Determinante ist hilfreich um herauszubekommen ob die Matrix überhaupt invertierbar ist.

viele grüße
riley

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de