www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - LIPSCHITZ-Bedingung
LIPSCHITZ-Bedingung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LIPSCHITZ-Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:24 Sa 09.10.2010
Autor: monstre123

Aufgabe
LIPSCHITZ-Bedingung

Hallo,

ich hätte folgende Fragen:

1) Was ist die Lipschitz-Bedingung?

2) Wofür braucht man sie?


Ich habe mich schon eingelesen, aber ich verstehe das nicht?
Bitte nicht auf den Wiki-Link verweisen.

Danke vielmals.

        
Bezug
LIPSCHITZ-Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Sa 09.10.2010
Autor: leduart

Hallo monstre
Die Lipschitzbedingung für eine fkt f(x) in einem Intervall I=[a,b] heisst daß die funktion dort Lipschitz stetig ist mit der sog. lipschitzkonstanten L.
also dass für [mm] x,x_=\in [/mm] I gilt [mm] |f(x)-f(x_0|\le L*|x-x_0| [/mm] das ist etwas stärker als nur stetig. die meisten stetigen fkt. die du kennst sind auch Lipschitzstetig.
für f(x)=a*x ist für [mm] x\in \IR [/mm] L=a
für [mm] f(x)=x^2 [/mm] ist etwa in [0,1] L=2  in [2,4] L=8 usw.
wenn f differenzierbar ist kannst du L durch max(f'(x)) in dem Intervall abschätzen. überleg dir warum!
Gruss leduart


Bezug
                
Bezug
LIPSCHITZ-Bedingung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:00 Sa 09.10.2010
Autor: abakus


> Hallo monstre
>  Die Lipschitzbedingung für eine fkt f(x) in einem
> Intervall I=[a,b] heisst daß die funktion dort Lipschitz
> stetig ist mit der sog. lipschitzkonstanten L.
>  also dass für [mm]x,x_=\in[/mm] I gilt [mm]|f(x)-f(x_0|\le L*|x-x_0|[/mm]

Hier möchte ich einhaken.
Das kann man schreiben als
[mm] |\bruch{f(x)-f(x_0)}{x-x_0}|\le [/mm] L.
[mm] |\bruch{f(x)-f(x_0)}{x-x_0}| [/mm] beschreibt bekanntlich den Betrag des Sekantenanstiegs zwischen zwei Punkten des Graphen, und dieser Anstieg ist (bei beliebiger Wahl der Punkte im Intervall) stets durch den Wert L beschränkt.
Die Funktion [mm] f(x)=\wurzel{x} [/mm] ist z.B. in [mm] \IR [/mm] nicht lipschitzstetig, weil der Anstieg in der Nähe von x=0 undendlich groß werden kann und somit jedes vorgegebene L übersteigt.
Gruß Abakus

> das ist etwas stärker als nur stetig. die meisten stetigen
> fkt. die du kennst sind auch Lipschitzstetig.
>  für f(x)=a*x ist für [mm]x\in \IR[/mm] L=a
>  für [mm]f(x)=x^2[/mm] ist etwa in [0,1] L=2  in [2,4] L=8 usw.
> wenn f differenzierbar ist kannst du L durch max(f'(x)) in
> dem Intervall abschätzen. überleg dir warum!
>  Gruss leduart
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de