www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - LLL reduzierte Basis
LLL reduzierte Basis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LLL reduzierte Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Do 06.08.2009
Autor: Joan2

Aufgabe
Zu zeigen:

[mm] \pi_{i}(b_{i+1}) [/mm] =  [mm] b^{'}_{i+1} [/mm] + [mm] \mu_{i+1,i}b^{'}_{i} [/mm]

Ich habe versucht die Gleichung mit Gram-Schmidt und der Projektionsoperation zu lösen, aber irgendwie komme ich nicht weiter.

[mm] \pi_{i}(b_{i+1}) [/mm] = [mm] \summe_{j=i}^{n}\bruch{}{}*b^{'}_{j} [/mm]

= [mm] \summe_{j=i}^{n} \mu_{i+1,j}*b_{j} [/mm]

= [mm] \mu_{i+1,i}*b_{i} [/mm] + [mm] \summe_{j=i+1}^{n} \mu_{i+1,j}*b_{j} [/mm]

weiter weiß ich leider nicht :(
Hoffe, mir kann jemand helfen.

Liebe Grüße
Joan



        
Bezug
LLL reduzierte Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Do 06.08.2009
Autor: felixf

Hallo Joan,

> [mm]\pi_{i}(b_{i+1})[/mm] =  [mm]b^{'}_{i+1}[/mm] + [mm]\mu_{i+1,i}b^{'}_{i}[/mm]
>  Ich habe versucht die Gleichung mit Gram-Schmidt und der
> Projektionsoperation zu lösen, aber irgendwie komme ich
> nicht weiter.

Koenntest du die benoetigten Definitionen und Bedeutungen aufschreiben? Also was die [mm] $b_i$, [/mm] $b'_i$, [mm] $\mu_{ij}$, $\pi_i$ [/mm] sind?

LG Felix


Bezug
                
Bezug
LLL reduzierte Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:07 Fr 07.08.2009
Autor: Joan2

Also es gilt

Basis B = [mm] (b_{i},b_{j}) [/mm]

b' ist der Gram-Schmidt orthogonalisierte Vektor von b durch

[mm] b^{'}_{i} [/mm] = [mm] b_{i} [/mm] - [mm] \summe_{j=i}^{i-1} \mu_{i,j}*b^{'}_{j} [/mm]
[mm] \mu_{i,j} [/mm] = [mm] \bruch{}{} [/mm]

Projektionsoperation [mm] \pi_{i} [/mm] ist definiert als:
[mm] \pi_{i}(x) [/mm] = [mm] \summe_{j=i}^{n}\bruch{}{} [/mm]


Ich hoffe die sind ausreichend.

Liebe Grüße
Joan



Bezug
        
Bezug
LLL reduzierte Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 03:35 Fr 07.08.2009
Autor: felixf

Moin Joan

> [mm]\pi_{i}(b_{i+1})[/mm] =  [mm]b^{'}_{i+1}[/mm] + [mm]\mu_{i+1,i}b^{'}_{i}[/mm]
>  Ich habe versucht die Gleichung mit Gram-Schmidt und der
> Projektionsoperation zu lösen, aber irgendwie komme ich
> nicht weiter.

Es ist ja [mm] $b_{i+1} [/mm] = [mm] b_{i+1}' [/mm] + [mm] \sum_{j=1}^i \mu_{i+1,j} b_j'$ [/mm] und damit [mm] $\pi_i(b_{i+1}) [/mm] = [mm] \pi_i(b_{i+1}') [/mm] + [mm] \sum_{j=1}^i \mu_{i+1,j} \pi_i(b_j')$. [/mm]

Nun ist [mm] $\pi_i(b_{i+1}') [/mm] = [mm] b_{i+1}'$, $\pi_i(b_i') [/mm] = [mm] b_i'$ [/mm] und [mm] $\pi_i(b_j') [/mm] = 0$ fuer $j < i$; daraus folgt die Behauptung.

LG Felix


Bezug
                
Bezug
LLL reduzierte Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Fr 07.08.2009
Autor: Joan2

Danke für die Hilfe, aber eines versteh ich noch nicht ganz: warum ist $ [mm] \pi_i(b_j') [/mm] = 0 $.

Liebe Grüße
Joan

Bezug
                        
Bezug
LLL reduzierte Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Fr 07.08.2009
Autor: felixf

Hallo Joan

> Danke für die Hilfe, aber eines versteh ich noch nicht
> ganz: warum ist [mm]\pi_i(b_j') = 0 [/mm].

Setz das doch mal ein. Was ist denn [mm] $\langle b_j', b_k' \rangle$ [/mm] mit $j < i [mm] \le [/mm] k$?

LG Felix


Bezug
                
Bezug
LLL reduzierte Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 Fr 07.08.2009
Autor: Joan2

Achso, klar :)

Vielen, vielen Danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de