LM für lin. Gleichungssystem < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:23 Do 26.01.2006 | Autor: | knAlle |
Aufgabe | [mm] \pmat{ 1 & -d & 0 \\ 2 & 0 & 1 \\ 0 & 6d &3 } \pmat{ t{1} \\ t{2} \\ t{3} } [/mm] = [mm] \pmat{ 0 \\ 0 \\ 0 } [/mm]
mit d Element von R |
So. Für einen Brückenkurs wurde die folgende Aufgabe als relevant für die Klausur angegeben. Ich habe diese Aufgabe mit einer Freundin zusammen gelöst, bin mir aber fast sicher, dass wir eine Fehler begangen haben, da der LSGweg mir zu einfach erscheint...
AUFGABENSTELLUNG:
a) Bestimme die allg. LSGmenge!
b) Für welchen Wert von d besitzt das Gleichungssystem unendlich viele LSG?
-Wir sind nun in der Annahme vorgegangen, man könne die (t1, t2 und t3) = 0 setzen.
- 1.Zeile * 2 - 2.Zeile
[mm] \pmat{ 1 & -d & 0 | 0 \\ 0 & -2d & -1 | 0 \\ 0 & 6d &3 | 0 }
[/mm]
(Der Strich vor den Nullen sollte durchgehend sein, kann ich aber nicht besser darstellen... )
- 2.Zeile *3 + 3.Zeile ........
[mm] \pmat{ 1 & -d & 0 | 0 \\ 0 & 0 & 0 | 0 \\ 0 & 0 & 0 | 0 }
[/mm]
- Das dann *(-1) (gebe ich jetzt nicht nochmal extra an)
LSG: unendlich viele LSG für d
Ich hoffe ein Mathebrain schaut vorbei und sagt es ist richtig so ;)
Mein Zweifel bezieht sich auf den mittleren Teil: (t1, t2 und t3) muss dieser nicht mit der Matrix multipliziert werden o. Ä. ???
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo!
> [mm]\pmat{ 1 & -d & 0 \\ 2 & 0 & 1 \\ 0 & 6d &3 } \pmat{ t{1} \\ t{2} \\ t{3} }[/mm]
> = [mm]\pmat{ 0 \\ 0 \\ 0 }[/mm]
> mit d Element von R
> So. Für einen Brückenkurs wurde die folgende Aufgabe als
> relevant für die Klausur angegeben. Ich habe diese Aufgabe
> mit einer Freundin zusammen gelöst, bin mir aber fast
> sicher, dass wir eine Fehler begangen haben, da der LSGweg
> mir zu einfach erscheint...
>
> AUFGABENSTELLUNG:
> a) Bestimme die allg. LSGmenge!
> b) Für welchen Wert von d besitzt das Gleichungssystem
> unendlich viele LSG?
>
> -Wir sind nun in der Annahme vorgegangen, man könne die
> (t1, t2 und t3) = 0 setzen.
Das verstehe ich nicht - was meinst du damit? Also, im Prinzip bedeutet das, was da steht, folgendes:
[mm] t_1-d*t_2+0*t_3=0
[/mm]
[mm] 2t_1+0*t_2+t_3=0
[/mm]
[mm] 0*t_1+6d*t_2+3*t_3=0
[/mm]
Das ist das, was du am Ende schreibst, dass die t_is mit der Matrix multipliziert werden. So wäre es dann allgemein direkt angegeben als Gleichungssystem, damit man es aber einfacher lösen kann (also nicht so viel schreiben muss), schreibt man es oft in Matrixschreibweise und löst es dann z. B. mit dem Gaußalgorithmus. Aber dabei werden [mm] t_1,t_2 [/mm] und [mm] t_3 [/mm] nicht =0 gesetzt!
> - 1.Zeile * 2 - 2.Zeile
>
> [mm]\pmat{ 1 & -d & 0 | 0 \\ 0 & -2d & -1 | 0 \\ 0 & 6d &3 | 0 }[/mm]
> (Der Strich vor den Nullen sollte durchgehend sein, kann
> ich aber nicht besser darstellen... )
>
> - 2.Zeile *3 + 3.Zeile ........
>
> [mm]\pmat{ 1 & -d & 0 | 0 \\ 0 & 0 & 0 | 0 \\ 0 & 0 & 0 | 0 }[/mm]
Wo ist denn hier plötzlich die letzte Zeile geblieben? Du kannst doch in einem Schritt nicht zwei ganze Zeilen eliminieren?
> - Das dann *(-1) (gebe ich jetzt nicht nochmal extra an)
>
> LSG: unendlich viele LSG für d
Also ich erhalte: [mm] \pmat{1&-d&0\\0&2d&1\\0&0&0}
[/mm]
> Ich hoffe ein Mathebrain schaut vorbei und sagt es ist
> richtig so ;)
Nicht ganz.
> Mein Zweifel bezieht sich auf den mittleren Teil: (t1, t2
> und t3) muss dieser nicht mit der Matrix multipliziert
> werden o. Ä. ???
Jetzt klar?
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 00:48 Fr 27.01.2006 | Autor: | knAlle |
Huhu Bastiane!
Vielen Dank schonma für die flinke Antwort!
Ich hatte da einen kleinen Fehler mit der 2.Zeile. Hab nochmal durchgerechnet und bin auf das gleiche Ergebnis gekommen. Allerdings kann ich jetzt mit dem verbleibenden Rest nix anfangen:
[mm] \pmat{ 1 & -d & 0 \\ 0 & 2d & 1 \\ 0 & 0 & 0 } [/mm] ist ja dann
t1-t2*d = 0
t2*2d+t3 = 0
0 = 0
Wie mache ich dann weiter?? wie sieht die LSG aus? Und wie finde ich raus, für welchen Wert von d das Gleichungssystem unendlich viele LSG hat??
Fragen über Fragen...(bin aber auch ein derber mathenoob)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 03:06 Fr 27.01.2006 | Autor: | djmatey |
Hi,
wegen der Nullzeile hat das LGS unendlich viele Lösungen, denn da steht ja
[mm] 0t_{1}+0t_{2}+0t_{3}=0
[/mm]
Du kannst also [mm] t_{3} [/mm] beliebig setzen, dann [mm] t_{1} [/mm] und [mm] t_{2} [/mm] ausrechnen:
[mm] t_{2}= -\bruch{t_{3}}{2d} [/mm] und [mm] t_{1} [/mm] = [mm] dt_{2} [/mm] = [mm] -\bruch{t_{3}}{2}
[/mm]
Du musst nur darauf achten, dass d [mm] \not= [/mm] 0 ist, ansonsten kannst Du für d alles einsetzen. Es gibt also für jedes d [mm] \not= [/mm] 0 unendlich viele Lösungen.
Überlege Dir, wie die Lösungsmenge des LGS aussieht! (Im Prinzip steht sie ja schon oben)
Liebe Grüße,
djmatey
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:24 Sa 28.01.2006 | Autor: | knAlle |
Einen Dank an meine Helferlein, hab die Aufgabe in der Klausur zwar nicht 100% lösen können, aber immerhin noch einen Punkt bekommen, der mir dann doch noch den Hals gerettet hat :)
Muss mir das Thema nochma in Ruhe zu Gemüte führen..
|
|
|
|