www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - LP Optimierung umformulieren
LP Optimierung umformulieren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LP Optimierung umformulieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Di 24.07.2012
Autor: tc_engineer

Hallo!

Ich habe ein Optimierungsproblem der Form

$min\ [mm] ||x||_{l_1}$ [/mm]
$s.t.\ [mm] ||Ax-b||_{l_2}<\epsilon$ [/mm]

Mein Optimierungssolver in Matlab nimmt Problemstellungen der Form

$min\ [mm] ||x||_{l_1}$ [/mm]
$s.t.\ [mm] ||b-Ax||_{l_2}<\epsilon$ [/mm]

entgegen. Vom Ausgangsproblem $Ax=b$ her, welches gelöst werden soll, ist mir nicht klar, ob die Beschreibungen das gleiche ausdrücken (also zum gleichen Ergebnis kommen), da die Differenz, wenn anschließend mittels Norm der Betrag usw. gebildet wird, ja nicht mehr zwangsläufig gleich ist.

Außerdem kann ich es dem Solver so nicht vorsetzen, da der b und A als Parameter nimmt und die zweite Problemstellung anwendet. Gibt es einen Weg, das geeignet umzuformulieren, damit der Solver es schluckt?

Viele Grüße
tc_engineer

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
LP Optimierung umformulieren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Di 24.07.2012
Autor: kamaleonti

Hallo,
> ist mir nicht klar, ob die Beschreibungen das
> gleiche ausdrücken (also zum gleichen Ergebnis kommen), da
> die Differenz, wenn anschließend mittels Norm der Betrag
> usw. gebildet wird, ja nicht mehr zwangsläufig gleich ist.

Ganz unabhängig von deinem Problem gilt für eine Norm [mm] \|\cdot\|:V\to\IR [/mm]

   [mm] \|\lambda x\|=|\lambda|\|x\|, \lambda\in\IK [/mm] und [mm] $x\in [/mm] V$.

Hierbei ist V der normierte Raum über dem Grundkörper [mm] \IK. [/mm]

Was bedeutet das für deine Fragestellung?

LG

Bezug
                
Bezug
LP Optimierung umformulieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Di 24.07.2012
Autor: tc_engineer

Ja, was bedeutet das für meine Fragestellung? Sag du es mir, ich sehe keinen Zusammenhang ;-).

Bezug
                        
Bezug
LP Optimierung umformulieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:48 Mi 25.07.2012
Autor: kamaleonti


> Ja, was bedeutet das für meine Fragestellung? Sag du es
> mir, ich sehe keinen Zusammenhang ;-).

Nicht den geringsten?

Du hast eine Norm und dein Frage lautet doch übertragen, ob

     [mm] \|Ax-b\|_{l_2}=\|b-Ax\|_{l_2} [/mm]

gilt. Nun streng dein Hirn mal an;-)

LG

Bezug
                                
Bezug
LP Optimierung umformulieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Mi 25.07.2012
Autor: tc_engineer

Hmm, Hirn anstrengen, na mal sehen, sowas kann schief gehen ;-).

Wenn ich [mm] $\lambda=-1$ [/mm] nehme, könnte ich mittels deiner Regel $||Ax-b||$ evtl. umformen.

$|-1|\ ||Ax-b||=|-1|\ ||b-Ax||$
$||-Ax+b||=|-1|\ ||b-Ax||$
$||b-Ax||=1\ ||b-Ax||$

Die Richtung vielleicht?

Bin in der Beziehung eher Anwender und will ein Optimierungsproblem lösen, ohne mich zu sehr mit den mathematischen Frameworks dahinter rumzuschlagen.

Bezug
                                        
Bezug
LP Optimierung umformulieren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Mi 25.07.2012
Autor: schachuzipus

Hallo tc_engineer,


> Hmm, Hirn anstrengen, na mal sehen, sowas kann schief gehen
> ;-).
>  
> Wenn ich [mm]\lambda=-1[/mm] nehme, [ok] könnte ich mittels deiner Regel
> [mm]||Ax-b||[/mm] evtl. umformen.
>  
> [mm]|-1|\ ||Ax-b||=|-1|\ ||b-Ax||[/mm]
>  [mm]||-Ax+b||=|-1|\ ||b-Ax||[/mm]
>  
> [mm]||b-Ax||=1\ ||b-Ax||[/mm]
>  
> Die Richtung vielleicht?

So in der Art, es sollte aber deutlich dastehen, dass [mm]||b-Ax||=||Ax-b||[/mm]

Geradeheraus als Vorschlag so:

[mm]||b-Ax||=||(-1)\cdot{}(Ax-b)||=|-1|\cdot{}||Ax-b||=||Ax-b||[/mm]

>  
> Bin in der Beziehung eher Anwender und will ein
> Optimierungsproblem lösen, ohne mich zu sehr mit den
> mathematischen Frameworks dahinter rumzuschlagen.

Gruß

schachuzipus


Bezug
                                                
Bezug
LP Optimierung umformulieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 Mi 25.07.2012
Autor: tc_engineer

Gut, danke euch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de