www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - LR Zerlegung
LR Zerlegung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LR Zerlegung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:04 So 20.09.2009
Autor: elba

Aufgabe
a) Berechnen Sie die LR-Zerlegung der Matrix

A= [mm] \pmat{ 2 & -3 & 2 & 5 \\ 1 & -1 & 1 & 2 \\ 3 & 2 & 2 & 1 \\ 1 & 1 & -3 & -1 } [/mm]
mit Spaltenpivotsuche. Führen sie dabei alle Zwischenschritte auf.

b) Berechnen Sie dann mit Hilfe der obigen Zerlegung die Lösung des Gleichungssystems Ax=b für b=(1, 1, 2, [mm] -1)^{T} [/mm]

Mit Spaltenpivotsuche bedeutet ja erstmal, dass ich in diesem Fall die 1. und 3. Zeile tausche, richtig?
Dann meine Frage, wenn ich dann anfange mit der Gaußelimination multipliziere ich die erste Zeile mit [mm] \bruch{1}{3} [/mm] oder die zweite Zeile mit 3 und subtrahiere diese dann?
Steht also in meiner L-Matrix an der Stelle [mm] l_{2,1} [/mm] 3 oder [mm] \bruch{1}{3}. [/mm]
Ich hoffe ihr versteht was ich meine :).
LG, elba

        
Bezug
LR Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 So 20.09.2009
Autor: Pacapear

Hallo Elba!



>  Mit Spaltenpivotsuche bedeutet ja erstmal, dass ich in
> diesem Fall die 1. und 3. Zeile tausche, richtig?

[ok]



>  Dann meine Frage, wenn ich dann anfange mit der
> Gaußelimination multipliziere ich die erste Zeile mit
> [mm]\bruch{1}{3}[/mm] oder die zweite Zeile mit 3 und subtrahiere
> diese dann?

Die erste Zeile (also die jetzige Pivotzeile) veränderst du nicht, du multiplizierst sie also nicht mit [mm] \bruch{1}{3}. [/mm]
Du brauchst diese Zeile ja noch zum erzeugen der 0 in den anderen Zeilen, dann wärs ja doof, wenn du die immer wieder "anpassen" musst.

Du subtrahierst von der Zeile, in der du eine 0 erzeugen willst, ein Vielfaches der Pivotzeile.

Hier also:

Wenn du in Zeile 2 an der ersten Stelle eine 0 erzeugen willst, dann subtrahierst du von Zeile 2 das [mm] \bruch{1}{3}-fache [/mm] der ersten Zeile.

Wenn du danach in Zeile 3 an der ersten Stelle ein 0 erzeugen willst, dann subtrahierst du von Zeile 3 das [mm] \bruch{2}{3}-fache [/mm] der zweiten Zeile.

Und analog für Zeile 4.



>  Steht also in meiner L-Matrix an der Stelle [mm]l_{2,1}[/mm] 3 oder
> [mm]\bruch{1}{3}.[/mm]
>  Ich hoffe ihr versteht was ich meine :).

In der L-Matrix werden die Vielfachen gespeichert.
An der Stelle [mm]l_{2,1}[/mm] steht dann also [mm] \bruch{1}{3}. [/mm]



LG, Nadine

Bezug
                
Bezug
LR Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 So 20.09.2009
Autor: elba

Ja, super danke!
Ich hab's dann glaub ich auch:

L= [mm] \pmat{ 1 & 0 & 0 & 0 \\ \bruch{1}{3} & 1 & 0 & 0 \\ \bruch{2}{3} & 2\bruch{3}{5} & 1 & 0 \\ \bruch{1}{3} & \bruch{-1}{5} & 18 & 1} [/mm]

R= [mm] \pmat{ 3 & 2 & 2 & 1 \\ 0 & -1\bruch{2}{3} & \bruch{1}{3} & 1\bruch{2}{3} \\ 0 & 0 & \bruch{-1}{5} & 0 \\ 0 & 0 & 0 & -1} [/mm]

b) x= [mm] \vektor{2 \\ -2 \\ 1 \\ -2} [/mm]

Bezug
                        
Bezug
LR Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 So 20.09.2009
Autor: Pacapear

Hallo Elba.



> L= [mm]\pmat{ 1 & 0 & 0 & 0 \\ \bruch{1}{3} & 1 & 0 & 0 \\ \bruch{2}{3} & 2\bruch{3}{5} & 1 & 0 \\ \bruch{1}{3} & \bruch{-1}{5} & 18 & 1}[/mm]
>  
> R= [mm]\pmat{ 3 & 2 & 2 & 1 \\ 0 & -1\bruch{2}{3} & \bruch{1}{3} & 1\bruch{2}{3} \\ 0 & 0 & \bruch{-1}{5} & 0 \\ 0 & 0 & 0 & -1}[/mm]

Die Matrix R bekomme ich auch raus, allerdings nur dann, wenn ich nach dem Erzeugen der Nullen in der ersten Spalte die restliche LR-Zerlegung ohne Spaltenpivotisierung mache.

Meine L-Matrix ist dann auch wie deine, bis auf das mein Eintrag [mm] l_{4,3}=-\bruch{11}{9} [/mm] ist.

Solltet ihr nur im ersten Schritt die Spaltenpivotisierung machen?



> b) x= [mm]\vektor{2 \\ -2 \\ 1 \\ -2}[/mm]  

Das hab ich jetzt nicht nachgerechnet, weil ich jetzt nicht wusste, ob unsere Ergebnisse oben korrekt sind, oder ob man doch überall Spaltenpivotisierung machen sollte.



LG, Nadine

Bezug
                                
Bezug
LR Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 20.09.2009
Autor: elba

ah ok. Jetzt wo du es sagst glaube ich, dass wir natürlcih weiter mit Spaltenpivotisierung arbeiten mussten.
Dann muss ich also, wenn ich in der ersten Spalte die Nullen erzeugt habe, die 3. mit der 2. zeile tauschen, richtig?

Bezug
                                        
Bezug
LR Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 So 20.09.2009
Autor: Pacapear

Hallo Elba.

> ah ok. Jetzt wo du es sagst glaube ich, dass wir natürlcih
> weiter mit Spaltenpivotisierung arbeiten mussten.
>  Dann muss ich also, wenn ich in der ersten Spalte die
> Nullen erzeugt habe, die 3. mit der 2. zeile tauschen,
> richtig?

[ok]

LG, Nadine


Bezug
                                                
Bezug
LR Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:19 Mo 21.09.2009
Autor: elba

Wenn ich jetzt aber weiter mit Spaltenpivotisierung arbeite und die 2. 3. Zeile tausche, ist mein [mm] l_{3,2}= \bruch{5}{13}. [/mm] Und wenn ich so weiter rechne, ergeben bei mir L*R nicht wieder A.
Der Wert bei L ändert sich doch, wenn ich die Zeilen tausche, der kann dochnicht derselbe bleiben wie vorher,oder??

Bezug
                                                        
Bezug
LR Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mo 21.09.2009
Autor: Pacapear

Hallo Elba!

> Und wenn ich so weiter rechne, ergeben bei mir L*R nicht
> wieder A.
>  Der Wert bei L ändert sich doch, wenn ich die Zeilen
> tausche, der kann dochnicht derselbe bleiben wie
> vorher,oder??

Die Zerlegung bei Spaltenpivotisierung lautet wie folgt:

$P*A=L*R$

In der Matrix L tauschst du nix, die bildest du wie gewohnt.

Fürs Tauschen ist die Matrix P zuständig.

Für jeden Tausch brauchst du eine Matrix [mm] P_i [/mm] , alle [mm] P_i [/mm] miteinander multipliziert ergeben P.

Du bildest [mm] P_i [/mm] wie folgt: Nimm die Einheitsmatrix und tausche darin die Zeilen, die du auch in A tauschst.

Also für [mm] P_1 [/mm] : Du tauschst Zeile 1 und 3 [mm] \Rightarrow [/mm] Aus [mm] E=\pmat{ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1} [/mm] wird [mm] P_1=\pmat{0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1} [/mm]

Kommst du nun weiter?

LG, Nadine


Bezug
                                                                
Bezug
LR Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:51 Di 22.09.2009
Autor: elba

Nein, ehrlich gesagt nicht.
Ich notiere doch in der L Matrix immer gerade die Werte mit der ich die andere Matrix umforme um auf R zu kommen.
Deshalb weiß ich gerade nicht, was ich mit der Matrix P machen soll. Damit habe ich vorher nie gearbeitet.
Ich verstehe nicht wie die Matrix L gleich leiben kann in dem Eintrag, wenn ich doch die Zeilen getauscht habe und nun einen anderen Faktor brauche um die Matrix umzuformen.

Bezug
                                                                        
Bezug
LR Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Di 22.09.2009
Autor: awakening

look here

https://matheraum.de/read?t=342514

Bezug
                                                                                
Bezug
LR Zerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 Di 22.09.2009
Autor: elba

Danke schön!
Jetzt hab ichs auch verstanden und mein L und R habe ich nun auch !!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de