www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - L'Hospital für Folgen?
L'Hospital für Folgen? < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'Hospital für Folgen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 So 12.02.2006
Autor: alx3400

Hallo,

Meine Frage: Kann man die Regeln von L'Hospital zur Grenzwertberechnung auch für Folgen verwenden? Definiert sind sie doch nur für Funktionen oder?
Danke schonmal.

Habe die Frage in keinem anderen Forum gestellt.

        
Bezug
L'Hospital für Folgen?: Ableitung einer Folge?
Status: (Antwort) fertig Status 
Datum: 15:26 So 12.02.2006
Autor: leduart

Hallo Alex
Wie willst du L'Hopital denn auf Folgen anwenden, es geht doch darum, dass lim f/g=lim f'/g' unter gewissen Vors. Und das macht bei Folgen doch keinen Sinn?
Oder was meins du sonst? vielleicht ein Beispiel?
Gruss leduart

Bezug
                
Bezug
L'Hospital für Folgen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 So 12.02.2006
Autor: alx3400

Ok, ein Beispiel, für das man l'Hospital eigentlich nicht braucht, aber mir fällt grad nichts besseres ein.

Die Folge ist [mm] a_{n} [/mm] = [mm] \bruch{x}{x^{2}} [/mm]

Dann könnte ich jeweils von Zähler und Nenner so lange Ableitungen bilden, bis ich auf das richtige Ergebnis komme. Dass ich Folgen nicht differenzieren kann ist mir klar, aber die Folgen konvergieren doch gegen den gleichen Grenzwert wie die Funktionen mit gleichem Term. Als Lösungsweg kann ich dann L'hospital nicht angeben, aber wenn nur das Ergebnis gefragt ist, kann ichs doch so rechnen oder nicht?

Bezug
                        
Bezug
L'Hospital für Folgen?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 So 12.02.2006
Autor: leduart

Hallo Alex
> Ok, ein Beispiel, für das man l'Hospital eigentlich nicht
> braucht, aber mir fällt grad nichts besseres ein.
>  
> Die Folge ist [mm]a_{n}[/mm] = [mm]\bruch{x}{x^{2}}[/mm]

Das ist doch keine Folge [mm] a_{n}, [/mm] das hängt doch gar nicht von n ab, als [mm] a_{n} [/mm] ist das für jedes x ne konstante Folge und konvergiert für n gegen unendlich gegen  [mm]\bruch{x}{x^{2}}[/mm].
und falls du lim  [mm]f(x)=\bruch{x}{x^{2}}[/mm] für x gegen 0 oder unendlich meinst, das ist keine Folge!
Gruss leduart

Bezug
                                
Bezug
L'Hospital für Folgen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 So 12.02.2006
Autor: alx3400

Da hatte ich mich natürlich vertan.

Ich meinte [mm] a_{n} [/mm] = [mm] \bruch{n}{n^{2}} [/mm] und die Funktion f(x) = [mm] \bruch{x}{x^{2}} [/mm] .

Für [mm] \limes_{n\rightarrow\infty} [/mm] f(x) kann ich ja l'Hospital anwenden und erhalte 0 als Grenzwert. Der Grenzwert von f ist aber gleich dem Grenzwert von [mm] a_{n}, [/mm] also könnte ich l'hospital auch auch [mm] a_{n} [/mm] anwenden.
So meinte ich das. Dass das formal nicht korrekt ist, weiss ich, aber es kommt doch immer der korrekte Grenzwert raus oder nicht?

Bezug
                                        
Bezug
L'Hospital für Folgen?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 So 12.02.2006
Autor: leduart

Hallo Alex
In der Form ist es völlig ok, denn wenn es ein X so dass für alle x>X [mm] |f(x)-g|<\epsilon, [/mm] dann hat man das nächste N an X und es gilt auch [mm] |an-g|<\epsilon, [/mm] falls n>N. also nicht nur zum Ausrechnen, sondern auch formal richtig.
Gruss leduart

Bezug
                                                
Bezug
L'Hospital für Folgen?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:18 Mo 13.02.2006
Autor: alx3400

Dankeschön.

Dann haben wir das letztendlich ja doch noch geklärt. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de