www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Ladung der Erde
Ladung der Erde < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ladung der Erde: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 So 07.12.2008
Autor: tedd

Aufgabe
An der Erdoberfläche beträgt die elektrische Feldstärke im Mittel 130 V/m (Man findet
auch die Angabe 300 V/m). Sie ist zur Erdmitte gerichtet. Wie groß sind
Flächenladungsdichte und Ladung der Erde ?
(Radius der Erde r = 6,37 * [mm] 10^6 [/mm] m, εLuft [mm] \approx [/mm] 8,86 * [mm] 10^{-12} [/mm] As/Vm )

Also die Flächenladungsdichte ist doch so definiert oder?

[mm] \rho=\bruch{\Delta Q}{\Delta A} [/mm]

Die Fläche der Erde kann ich ja mit der Formel für die Kugeloberfläche berechnen:

[mm] A=4*\pi*r^2 [/mm]

Die Flussdichte wär falls ich die brauchen sollte: [mm] D=\epsilon*E [/mm] ...


Aber das alles hilft mir nicht wirklich weiter, da ich nicht weis wo ich ansetzen soll.

Ich nehme aber an, dass ich das über den Integralsatz von Gauß lösen kann nur irgendwie fehlt mir da der Ansatz [keineahnung]

Danke und Gruß,
tedd

        
Bezug
Ladung der Erde: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Mi 10.12.2008
Autor: tedd

Also ich hätte jetzt eigentlich gedacht, dass man das evtl so macht.

[mm] Q=\integral_{A}{\overrightarrow{D}*\overrightarrow{dA}} [/mm]

Da die [mm] \overrightarrow{D} [/mm] senkrecht auf der Hülle "steht" kann ich die Vektoren wegfallen lassen.

[mm] Q=\integral_{A}{D*dA} [/mm]

D ist eine konstante und kann ich vor das Integral ziehen.

[mm] Q=D*\integral_{A}{dA} [/mm]

Da ich über die Fläche integrieren will wird das dA zu A

Q=D*A

[mm] A=4*\pi*r^2 [/mm]

[mm] D=\epsilon*E [/mm]

[mm] Q=\epsilon*E*4*\pi*r^2 [/mm]

Aber das kommt mir irgendwie viel zu einfach vor.

Ausserdem weis ich jetzt immernoch nicht so ganz wie ich an die Flächenladungsdichte komme.

Danke und Gruß,
tedd

Bezug
        
Bezug
Ladung der Erde: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Do 11.12.2008
Autor: rainerS

Hallo tedd!

Du schreibst:

> An der Erdoberfläche beträgt die elektrische Feldstärke im
> Mittel 130 V/m (Man findet
>  auch die Angabe 300 V/m). Sie ist zur Erdmitte gerichtet.
> Wie groß sind
>  Flächenladungsdichte und Ladung der Erde ?
>  (Radius der Erde r = 6,37 * [mm]10^6[/mm] m, εLuft [mm]\approx[/mm]
> 8,86 * [mm]10^{-12}[/mm] As/Vm )
>  Also die Flächenladungsdichte ist doch so definiert oder?
>  
> [mm]\rho=\bruch{\Delta Q}{\Delta A}[/mm]
>  
> Die Fläche der Erde kann ich ja mit der Formel für die
> Kugeloberfläche berechnen:
>  
> [mm]A=4*\pi*r^2[/mm]
>  
> Die Flussdichte wär falls ich die brauchen sollte:
> [mm]D=\epsilon*E[/mm] ...

und weiter:

> Also ich hätte jetzt eigentlich gedacht, dass man das evtl so macht.

>

> [mm]Q=\integral_{A}{\overrightarrow{D}*\overrightarrow{dA}}[/mm]

>

> Da die [mm]\overrightarrow{D}[/mm] senkrecht auf der Hülle "steht" kann ich die Vektoren wegfallen lassen.

>

> [mm]Q=\integral_{A}{D*dA}[/mm]

>

> D ist eine konstante und kann ich vor das Integral ziehen.

>

> [mm]Q=D*\integral_{A}{dA}[/mm]

>

> Da ich über die Fläche integrieren will wird das dA zu A

>

> [mm]Q=D*A[/mm]

>

> [mm]A=4*\pi*r^2[/mm]

>

> [mm]D=\epsilon*E[/mm]

>

> [mm]Q=\epsilon*E*4*\pi*r^2[/mm]

>

> Aber das kommt mir irgendwie viel zu einfach vor.

Nein, das ist schon OK, nur musst du noch ein kleines Bischen weiterdenken.

> Ausserdem weis ich jetzt immernoch nicht so ganz wie ich an die Flächenladungsdichte komme.

Schauen wir uns die Sache genauer an: Es geht doch um die Ladung auf der Erdoberfläche. Die Erde nehmen wir als Kugel an, die Ladung Q sei gleichmäßig über die gesamte Erdoberfläche A verteilt. Wie groß ist dann die Flächenladungsdichte, ausgedrückt durch Q und A ?

So, nun zum Gaußschen Satz. Den hast du richtig angewandt. (Allerdings möchte ich darauf hinweisen, dass er ganz allgemein gilt, also auch, wenn du als Fläche eine beliebige Kugelschale nimmst, zum Beispiel eine, die größer ist als die Erde. Damit könntest du, wenn du wolltest, die Feldstärke in einer gewissen Höhe über der Erdoberfläche berechnen.)

So, und nun setzt du dein Ergebnis für die Flächenladungsdichte und dein Ergebnis uas dem Gaußschen Satz zusammen.

Viele Grüße
   Rainer


Bezug
                
Bezug
Ladung der Erde: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 Sa 13.12.2008
Autor: tedd

Danke für die Antwort rainer:-)

Also kann ich für die Flächenladungsdichte auch einfach:

[mm] \rho=\bruch{Q}{A} [/mm] schreiben?

mit meinem Ergebnis aus der Ladung würde sich:

[mm] \rho=\bruch{\epsilon\cdot{}E\cdot{}4\cdot{}\pi\cdot{}r^2}{4*\pi*r^2}=\epsilon\cdot{}E=D [/mm]

ergeben?!

Danke und Gruß,
tedd

Bezug
                        
Bezug
Ladung der Erde: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Sa 13.12.2008
Autor: rainerS

Hallo tedd!

> Danke für die Antwort rainer:-)
>  
> Also kann ich für die Flächenladungsdichte auch einfach:
>  
> [mm]\rho=\bruch{Q}{A}[/mm] schreiben?
>  
> mit meinem Ergebnis aus der Ladung würde sich:
>  
> [mm]\rho=\bruch{\epsilon\cdot{}E\cdot{}4\cdot{}\pi\cdot{}r^2}{4*\pi*r^2}=\epsilon\cdot{}E=D[/mm]
>  
> ergeben?!

[ok]

Viele Grüße
   Rainer

Bezug
                                
Bezug
Ladung der Erde: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 So 14.12.2008
Autor: tedd

Echt?
Damit hätte ich jetzt nicht gerrechnet :-)

Vielen Dank Rainer! :)

Gruß,
tedd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de