www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Länge des Graphen
Länge des Graphen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge des Graphen: einer Funktion
Status: (Frage) beantwortet Status 
Datum: 20:08 Fr 05.09.2008
Autor: sommersonne

Aufgabe
Berechnen Sie die Länge des Graphen der Funktion
f: [mm] [\bruch{1}{4}, \bruch{4}{3}]->\IR, f(x)=x\wurzel{x} [/mm]

Hallo,

ich habe folgenden Lösungsanfang:
[mm] f(x)=x\wurzel{x} [/mm] = [mm] x*x^{1/2} [/mm] = [mm] x^{3/2} [/mm]
f'(x)= [mm] \bruch{3}{2}x^{1/2} [/mm]
[mm] f'(x)^2= \bruch{9}{4}x [/mm]

[mm] L(G_f) [/mm] = [mm] \integral_{\bruch{1}{4}}^{\bruch{4}{3}}{\wurzel{1+f'(x)^2}dx} [/mm] = [mm] \integral_{\bruch{1}{4}}^{\bruch{4}{3}}{\wurzel{1+\bruch{9}{4}x }dx} [/mm] =
[mm] \integral_{\bruch{1}{4}}^{\bruch{4}{3}}{(1+\bruch{9}{4}x)^{1/2}dx} [/mm] =
[mm] [(1+\bruch{9}{4}x)^{3/2}/(\bruch{3}{2} [/mm] * [mm] \bruch{9}{4})]= [/mm]
[mm] [(1+\bruch{9}{4}x)^{3/2}/\bruch{27}{8}] [/mm] =
[mm] (1+\bruch{9}{4}*\bruch{4}{3}^{3/2}/\bruch{27}{8})-(1+\bruch{9}{4}*\bruch{1}{4}^{3/2}/\bruch{27}{8})= [/mm]
.... (das Ausrechnen würde ich noch hinbekommen, aber ich finde die ganze Rechnung sieht schon sehr eigenartig aus...)



Liebe Grüße
sommersonne

        
Bezug
Länge des Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Fr 05.09.2008
Autor: rabilein1

Es ist doch schon mal ganz toll, dass du die generelle Formel für das Berechnen der Länge eines Graphen hast (das mit dem Integral aus Wurzel 1 plus f Strich....)

Bei solchen umfangreichen Formeln ist es kein Wunder, wenn die Rechnung dann eigenartig aussieht. Das heißt ja nicht, dass sie falsch ist. Ganz im Gegenteil: da du im Endeffekt nur noch Zahlen da stehen hast, die dein Taschenrechner so lösen kann, müsstet du rauskriegen können, wie lang der Graph ist.


Bezug
        
Bezug
Länge des Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Fr 05.09.2008
Autor: angela.h.b.


> Berechnen Sie die Länge des Graphen der Funktion
>  f: [mm][\bruch{1}{4}, \bruch{4}{3}]->\IR, f(x)=x\wurzel{x}[/mm]
>  
> Hallo,
>  
> ich habe folgenden Lösungsanfang:
>  [mm]f(x)=x\wurzel{x}[/mm] = [mm]x*x^{1/2}[/mm] = [mm]x^{3/2}[/mm]
>  f'(x)= [mm]\bruch{3}{2}x^{1/2}[/mm]
> [mm]f'(x)^2= \bruch{9}{4}x[/mm]
>  
> [mm]L(G_f)[/mm] =
> [mm]\integral_{\bruch{1}{4}}^{\bruch{4}{3}}{\wurzel{1+f'(x)^2}dx}[/mm]
> =
> [mm]\integral_{\bruch{1}{4}}^{\bruch{4}{3}}{\wurzel{1+\bruch{9}{4}x }dx}[/mm]
> =
>  
> [mm]\integral_{\bruch{1}{4}}^{\bruch{4}{3}}{(1+\bruch{9}{4}x)^{1/2}dx}[/mm]
> =
>  [mm][(1+\bruch{9}{4}x)^{3/2}/(\bruch{3}{2}[/mm] * [mm]\bruch{9}{4})]=[/mm]

Hallo,

die Stammfunktion ist jedenfalls richtig, und wenn Du Deine Kenntnisse der Bruchrechnung einsetzen und außerdem untenKlammern setzen würdest, sähe es doch ganz gut aus.

[mm] ...=\bruch{8}{27}* [(1+\bruch{9}{4}x)^{3/2}]_{\bruch{1}{4}}^{\bruch{4}{3}} [/mm]

=  [mm]\bruch{8}{27}*[(1+\bruch{9}{4}x)*(1+\bruch{9}{4}x)^{1/2}]_{\bruch{1}{4}}^{\bruch{4}{3}}[/mm] = ...,

Gruß v. Angela





Bezug
                
Bezug
Länge des Graphen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Fr 05.09.2008
Autor: sommersonne

Danke euch beiden, ich dachte ich hätte die Formel falsch verstanden.

Liebe Grüße
sommersonne

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de