www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Länge einer Zahlendarstellung
Länge einer Zahlendarstellung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Länge einer Zahlendarstellung: Zahlendarstellung, Tips, etc.
Status: (Frage) beantwortet Status 
Datum: 14:25 Sa 07.11.2009
Autor: cooper1988

Aufgabe 1
12. Länge einer Zahlendarstellung
Eine natürliche Zahl n > 0, zur Basis b ≥ 2 dargestellt (ohne führende Nullen), hat in
dieser b–adischen Darstellung genau dann die Länge k, wenn gilt:
[mm]b^{k - 1}[/mm]≤ n < [mm] b^k [/mm]


Aufgabe 2
a) Eine natürliche Zahl n1 habe in Dualdarstellung die Länge 10. Welche Längen kann sie dann in Dezimaldarstellung haben?

Aufgabe 3
b)  Eine natürliche Zahl n2 > 0 habe in Dualdarstellung die Länge k. Welche Längen kann sie dann in Dezimaldarstellung haben?

Aufgabe 4
c)  Eine nat. Zahl n3 > 0 habe in Dezimaldarstellung die Länge m. Welche Längen kann sie dann in Dualdarstellung haben?

zu a hab ich mir bisher überlegen können:

[mm]b^{k - 1}[/mm]≤ n1 < [mm] b^k [/mm]
[mm]b^{ 10 - 1}[/mm]≤ n1 < b^10
[mm]2^{ 10 - 1}[/mm]≤ n1 < 2^10

Aber irgendwie komme ich nicht weiter wie das gehen soll.
Das Script vom Prof ist sehr sinnfrei und in der Vorlesung kam dies nicht drann weil er es nicht mehr geschafft hat uns zu zeigen.


Und zu b und c könnt ich mir Vorstellen das dort etwas wie ein log rauskommen könnte

        
Bezug
Länge einer Zahlendarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Sa 07.11.2009
Autor: leduart

Hallo
Du musst nur wissen, dass die b-adische Darstellung einer zahl n ist:
[mm] n=\summe_{i=0}^{k}a_ib^i [/mm] mit [mm] 0\le a_k die b-adische Darstellung ist dann [mm] a_ka_{k-1}...a_1a_0 [/mm]
Beispiel b=3
[mm] 49|_{10}=\summe_{i=0}^{3}a_i*3^i=1*3^0+1*3^1+2*3^2+1*3^3=1211|_3 [/mm]
[mm] 49|_{10}=\summe_{i=0}^{2}a_i5^i=4*5^0+4*5^1+1*5^2=144|_5 [/mm]
zu 2.
welche Länge in 2er Darst hat [mm] 2^9, [/mm] 2^10  Welche Zahl kannst du dann grade noch mit 10 Stellen darstellen?
Die restlichen Aufgaben ähnlich.
Gruss leduart

Bezug
                
Bezug
Länge einer Zahlendarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Sa 07.11.2009
Autor: cooper1988

Weitere Überlegung:


[mm] 2^9 [/mm] ≤ n1 < 2^10
512 ≤ n1 < 1024

also dürfte es heißen das
length(512) = 3, length(1024) = 4

Da:
512 <= 10^(k-1)
also (k-1) = log10 512

Log10(512) = 2,7..... = 3
Log10(1024) = 3.0....... = 4


ist das so richtig?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de