www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Lage der Geraden zueinander
Lage der Geraden zueinander < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage der Geraden zueinander: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Mi 14.05.2008
Autor: moody

Aufgabe
g: [mm] \vec{x} [/mm] = [mm] \vec{a} [/mm] + [mm] t*(\vec{b}-\vec{a}) [/mm]

h: [mm] \vec{x} [/mm] = [mm] \vec{a} [/mm] + [mm] \vec{b} [/mm] + [mm] t*(\vec{a} [/mm] - [mm] 0.5\vec{b}) [/mm]

i: [mm] \vec{x} [/mm] = [mm] 0.5\vec{a} [/mm] + [mm] \vec{b} [/mm] + [mm] t*(\vec{a} [/mm] - [mm] \vec{b}) [/mm]

Bestimme die Lage der Geraden zueinander (g zu h, g zu i, h zu i, etc.).

Wenn es Schnittpunkte gibt, bestimme dessen Ortsvektor.

Dazu habe ich leider keine Idee,

ich weiß, dass man gucken muss ob z.B. [mm] \vec{v} [/mm] = r* [mm] \vec{u} [/mm] gilt, und wenn ja sind die parallel und das man dann durch [mm] \overrightarrow{OA} [/mm] + [mm] \lambda [/mm] * [mm] \vec{u} [/mm]  =  [mm] \overrightarrow{OB} [/mm] + [mm] \mu [/mm] * [mm] \vec{v} [/mm]  ist etc.

Aber das bekomme ich mit den oben genannten Gleichungen einfach nicht hin.

        
Bezug
Lage der Geraden zueinander: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mi 14.05.2008
Autor: tinakru

Hallo,

alles was du bisher genannt hast stimmt.
Schau dir mal bei der Geraden g den Richtungsvektor an:
(ich verzichte auf die Pfeile!)
(b-a).
und dann noch den Richtungsvektor der Geraden i:
(a-b)

Es gilt: (b-a) = - 1* (a-b)

Das heißt schon mal, dass die Geraden g und i die gleiche Richtung haben.
Da der Aufspannpunkt aber nicht gleich ist, sind g und i parallel.

Die Gerade h ist zu g und i weder parallel noch identisch. Enweder gibt es hier einen Schnittpunkt oder die Geraden sind dann windschief.

Das musst du ganz normal ausrechnen. Keine Angst vor den Buchstaben. Stell dir einfach vor die Buchstaben a und b sind Zahlen, dann verläuft die Rechnung analog.

Bezug
                
Bezug
Lage der Geraden zueinander: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mi 14.05.2008
Autor: moody

Also bei g zu h z.B.

da hätte man dann

a + t(b-a) = a + b + t(a - b/2)

das kann man nach -t(a-b) = b + (a - b/2) umformen

da weiß ich aber immernoch nicht ob schnittpunkt oder windschief. aber dein erster ansatz hat mir schon sehr geholfen,

Bezug
                        
Bezug
Lage der Geraden zueinander: Antwort
Status: (Antwort) fertig Status 
Datum: 09:08 Do 15.05.2008
Autor: Sigrid

Hallo Moody,

> Also bei g zu h z.B.
>  
> da hätte man dann
>  
> a + t(b-a) = a + b + t(a - b/2)

Vorsicht! Bei einer Schnittpunktsberechnung musst Du stets unterschiedliche Parameter wählen, also:

$ [mm] \vec{a} [/mm] + [mm] s(\vec{a} [/mm] - [mm] \vec{b}) [/mm] = [mm] \vec{a} [/mm] + [mm] \vec{b} [/mm] + [mm] t(\vec{a} [/mm] - [mm] \bruch{\vec{b}}{2}) [/mm] $

umgeformt:

$ [mm] s(\vec{a} [/mm] - [mm] \vec{b}) [/mm] = [mm] \vec{b} [/mm] + [mm] t(\vec{a} [/mm] - [mm] \bruch{\vec{b}}{2}) [/mm] $

Jetzt ausmultiplizieren und alles auf eine Seite bringen. Dann fasst Du die vielfachen von [mm] \vec{a} [/mm] bzw. [mm] \vec{b} [/mm] zusammen.
Du weißt sicher, welchen Schluss Du ziehen kannst, wenn [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] linear unabhängig sind. Sonst melde Dich.

Wenn in der Aufgabenstellung nicht angegeben ist, dass die Vektoren linear unabhängig sind, musst Du den Fall der linearen Abhängigkeit noch gesondert untersuchen.

Gruß
sigrid

>  
> das kann man nach -t(a-b) = b + (a - b/2) umformen


>  
> da weiß ich aber immernoch nicht ob schnittpunkt oder
> windschief. aber dein erster ansatz hat mir schon sehr
> geholfen,


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de