www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Lage zweier Ebenen
Lage zweier Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lage zweier Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 So 25.11.2007
Autor: ka...ui

Aufgabe
Bestimmen Sie a, b, und c so, dass die Ebenen E1 und E2    (1) sich schneiden, (2) zueinander parallel sind und keine gemeinsamen Punkte haben, (3) identisch sind.

E1: [mm]\vec x[/mm] = [mm] \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix} [/mm] + [mm] r\begin{pmatrix} 2 \\ b \\ 1 \end{pmatrix} [/mm] + [mm] s\begin{pmatrix} 3 \\ 1 \\ c \end{pmatrix} [/mm]
E2: [mm]\vec x[/mm] = [mm] \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} [/mm] + [mm] r\begin{pmatrix} 6 \\ 7 \\ 1 \end{pmatrix} [/mm] + [mm] s\begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} [/mm]

Ich wollte zunächst prüfen, für welche a,b,c die Ebenen identisch sind. Deshalb habe ich die Vekoren [mm]\vec t[/mm], [mm]\vec u[/mm] und [mm]\vec v[/mm] bzw. [mm]\vec w[/mm] auf lineare Abhängigkeit geprüft. Allerdings kann ich b nur in Abhängigkeit von b bestimmen und erhalte keine Zahl...
Es wäre sehr nett, wenn mir jemand bei der Lösung dieser Aufgabe helfen könnte, vielen Dank im Voraus!!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lage zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 So 25.11.2007
Autor: Teufel

Hallo!

Ich würde mit 1. und 2. anfangen. In den Aufgaben kriegst du auch schon ein paar Infos raus, die du bei 3. gebrauchen kannst. Zumindest 2. bringt dich weiter.

Musst du die Ebenengleichung eigentlich so lassen oder kannst du sie auch in andere Formen umwandeln?

Und ja, du erhälst nur Abhängigkeiten von b und c, zumindest bei den Spannvektoren!
Wie hast du es denn genau gemacht (also welche Vektoren hast du nun auf lineare Abhängigkeit geprüft) und was hast du raus?



Bezug
                
Bezug
Lage zweier Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 So 25.11.2007
Autor: ka...ui

Ich habe die Richtungsvektoren [mm] \begin{pmatrix} 2 \\ b \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ c \end{pmatrix} [/mm] und [mm] \begin{pmatrix} 6 \\ 7 \\ 1 \end{pmatrix} [/mm] auf lineare Abhängigkeit geprüft. Als Ergebnis hatte ich eine lineare Abhängigkeit für b= [mm]\bruch{17-14c}{3-6c} [/mm].
Danach würde ich noch die Richtungsvektoren [mm] \begin{pmatrix} 2 \\ b \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ c \end{pmatrix} [/mm] und [mm] \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} [/mm] prüfen.

Ich weiß nicht, ob man die Ebenengleichung umformen muss, zu dem Zeitpunkt hatten wir die Normalenform noch nicht, glaube ich...

Bezug
        
Bezug
Lage zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 So 25.11.2007
Autor: Teufel

Wie ich sehe machst du dir das Leben selber schwer :P

Anstatt zu gucken, ob sich [mm] \vektor{6 \\ 7 \\ 1} [/mm] aus [mm] \vektor{2 \\ b \\ 1} [/mm] und [mm] \vektor{3 \\ 1 \\ c} [/mm] bilden lässt, kannst du doch schauen, wann sich z.B.

[mm] \vektor{2 \\ b \\ 1} [/mm] aus [mm] \vektor{6 \\ 7 \\ 1} [/mm] und [mm] \vektor{-1 \\ 0 \\ 2} [/mm] bilden lässt. Dafür erhälst du dann konkete Werte.

Bezug
                
Bezug
Lage zweier Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 So 25.11.2007
Autor: ka...ui

Das is ne gute Idee :)
Dann ist die Aufgabe doch nicht mehr wirklich schwer, danke!!

Bezug
                        
Bezug
Lage zweier Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:26 So 25.11.2007
Autor: Teufel

Kein Problem! Ist mir auch eben wieder eingefallen ;) Zwar geht das mit den Abhängigkeiten sicher auch, aber muss ja nicht sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de