www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Lagebeziehungen... (s.unten)
Lagebeziehungen... (s.unten) < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagebeziehungen... (s.unten): ...von Geraden und Ebenen
Status: (Frage) beantwortet Status 
Datum: 14:22 Do 12.10.2006
Autor: Pure

Hallo, habe hier keine direkte Aufgabe, habe mir nur mal Gedanken darüber gemacht, wie man Lagebeziehungen von Geraden und Ebenen rechnerisch darstellen könnte. Also ich fang am besten mal an, damit ihr seht, wie weit ich komme... (g= Gerade, E=Ebene)
1. g kann parallel zu E sein, sie schneiden sich nicht.
  Dürfte doch heißen, dass man bei gleichsetzen der beiden Gleichungen keine Lösungsmenge herausbekommen dürfte, oder?

2. g kann in E liegen, ist somit eigentlich auch ''parallel''. Sind in diesem Fall nicht einfach die Richtungsvektoren Vielfache voneinander? Ich meine in den beiden Gleichungen. Könnte mir das anders sonst nicht erklären, bei Gleichsetzen gibt es ja eigentlich auch keine Lösungsmenge, oder? Sie schneiden sich ja nicht.

3. g kann E ''durchstoßen'', es gibt einen Schnittpunkt D. Darauf müsste ich doch eigentlich kommen, wenn ich beide Gleichungen gleichsetze und anschließend, nach Errechnen der reellen Zahlen von g und E, die errechneten, reellen Zahlen einfach in die x1, x2, x3-Gleichung einsetze und so die Koordinaten von D bekomme... ?

Sind meine Überlegungen so richtig? Weiß leider auch nicht, wie ich das ganze allgemein rechnerisch darstellen könnte... also ich meine nicht mit bestimmten Zahlen, sondern für den allgemeinen Fall...

Wäre super, wenn sich jemand meldet! :-)

Liebe Grüße, Pure

        
Bezug
Lagebeziehungen... (s.unten): Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Do 12.10.2006
Autor: Slartibartfast

Hallo Pure,

1. du bekommst eine "leere Menge", aber nicht "keine"

2. natürlich schneiden sich Gerade und Ebene (Gerade liegt in der Ebene) und beim Gleichsetzen bekommst du unendlich viele Lösungen

3. vorteilhaft ist, g in die Koord-Gleichung der Ebene einzusetzen, dann nach dem verbliebenen Parameter auflösen und in die Geradengleichung einsetzen.

Wenn du das allgemein haben willst, dann musst halt mit Komponentenschreibweise ran und das sieht irgendwann ein bisschen wild aus. Es reicht ja, wenn du den Vorgang in Worten beschreiben (und anwenden) kannst.

Gruß
Slartibartfast

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de