www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Lager zweier Ebenen zueinander
Lager zweier Ebenen zueinander < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lager zweier Ebenen zueinander: Beispiel Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:37 So 09.01.2005
Autor: Saby

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hi,
ich habe ein Problem mit dem Gebiet "die Lage zweier Ebenen zueinander".

Ich hab mich zwar über die Regeln der Ebenen informiert und denke sie auch verstanden zu haben, nur leider finde ich nirgends eine vernünftige Beispielaufgabe mit kompletten Lösungsweg, bei dem beide Ebenen in Punkt-Richtungs-Form gegeben sind. Die Übungsaufgabe in meinem Schulbuch ist soweit ich es weiß falsch (wie auch immer so was passieren kann).

Wäre nett wenn mir jemand eine komplette Aufgabe mit Lösungsweg posten könnte oder vielleicht linken wo eine zu finden ist, damit ich das Thema mal richtig nachvollziehen kann.

Danke im voraus


        
Bezug
Lager zweier Ebenen zueinander: Erklärung - Ergänzung
Status: (Antwort) fertig Status 
Datum: 18:01 So 09.01.2005
Autor: e.kandrai

Für ne komplette Aufgabe hab ich leider keine Zeit, aber ich kann dir hier mal schnell die Vorgehensweise erklären.

Es gibt 3 Möglichkeiten, wie 2 Ebenen zueinander liegen können: identisch, parallel, oder keins von beiden, und sie haben eine Schnittgerade.

Du wirst jetzt die Richtungsvektoren der beiden Ebenen untersuchen.
Mit diesen 4 Vektoren machst du jetzt folgendes: du schreibst sie in eine Matrix (in Zeilen oder Spalten ist egal) und formst sie um, wie ein "normales" LGS. Wenn dann darin zwei Zeilen rausfallen, dann gibt es 2 Möglichkeiten: die Ebenen sind parallel, oder identisch.
Diese 2 Fälle sind leicht zu unterscheiden: du prüfst einfach, ob der Aufpunkt (also der Stützvektor-Punkt) der einen Ebene auf der anderen draufliegt. Wenn ja, sind sie identisch, wenn nicht, dann parallel.

Und wenn in dem LGS nur eine Zeile rausfällt, dann sind die Vektoren lin. unabhängig, und in dem Fall besitzen die Ebenen eine Schnittgerade.

Mit Bildchen ist das einfacher nachzuvollziehen, ich hab da eins in nem alten Lambacher-Schweitzer-Buch gefunden.
Drunter hängen auch noch ein paar Aufgaben dran, die kannst ja mal probieren, und bei Schwierigkeiten dazu Fragen stellen.

[Dateianhang nicht öffentlich]

Eine einfachere Methode ergibt sich mit Hilfe der Normalenvektoren, bzw. der Koordinatenform. Habt ihr das schon gehabt?

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Lager zweier Ebenen zueinander: Frage
Status: (Frage) beantwortet Status 
Datum: 20:53 So 09.01.2005
Autor: Saby

Hi, also erstmal danke für Deine schnelle Antwort.

"Eine einfachere Methode ergibt sich mit Hilfe der Normalenvektoren, bzw. der Koordinatenform. Habt ihr das schon gehabt?" <-- Nein wir sollen uns die Ebenen in Parameterform bzw. Punkt-Richtung-Form anschauen, deswegen kann ich auch mit den meißten Aufgaben die ich über google finde nichts anfangen.

Zu den Aufgaben a,b,c,d. C hat hat ja keine Stützvektoren, rechnet man das genau als hätten die beiden welche? Ist das dann überhaupt eine bzw sind das 2 Ebenen? Ich habe versucht a,b und d auszurechnen, kann es sein, dass sich alle 3 nicht schneiden?

Danke im voraus

Bezug
                        
Bezug
Lager zweier Ebenen zueinander: Anmerkung zu (c)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 So 09.01.2005
Autor: Loddar

Hallo Saby,

auch Dir natürlich ein [willkommenmr] !!

Zu den "fehlenden" Stützvektoren kann man sagen, daß wir sonst in der Mathematik (i. allg.) auch keine "+ 0" hinschreiben ...

Beide Ebenen habe also den "Stützvektor" [mm] \vektor{0 \\ 0 \\ 0}, [/mm] sprich: sie gehen beide durch den Ursprung.


Loddar


Bezug
                        
Bezug
Lager zweier Ebenen zueinander: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 So 09.01.2005
Autor: e.kandrai

Hab die 4 Aufgaben grad durchgerechnet.

> Zu den Aufgaben a,b,c,d. C hat hat ja keine Stützvektoren,
> rechnet man das genau als hätten die beiden welche? Ist das
> dann überhaupt eine bzw sind das 2 Ebenen?

Ja, das sind auch 2 Ebenen. Der Stützvektor wurde jeweils [mm]\vektor{0 \\ 0 \\ 0}[/mm] gewählt, d.h. beide gehen durch den Koordinatenursprung.
Somit fällt auch die Möglichkeit "parallel" flach, entweder schneiden die sich also, oder sie sind identisch.

> Ich habe
> versucht a,b und d auszurechnen, kann es sein, dass sich
> alle 3 nicht schneiden?

Meine Ergebnisse:
a) parallel
b) Schnittgerade
c) Schnittgerade
d) identisch

Kannst deine Lösungswege ja mal posten, damit wir mal schauen können, wo der Fehler liegt. Allerdings werde ich heute Abend möglicherweise keine Zeit mehr haben...

Bezug
                                
Bezug
Lager zweier Ebenen zueinander: Richtig gelöst?
Status: (Frage) beantwortet Status 
Datum: 22:30 So 09.01.2005
Autor: Saby

Hi,

tut mir leid dass ich jetzt nicht dazu komme noch den ganzen Lösungsweg rein zuschreiben, wenn nötig werde ich es Morgen sofort nachholen, ist nur gerade wichtig zu wissen ob das Ergebnis stimmt!!

Ich habe nun b noch einmal durchgerechnet und kam dann für  E1 zu dem Ergebnis

[mm] \vektor{4 \\ 3 \\ 3} [/mm] + t  [mm] \vektor{-2 \\ 1 \\ 0} [/mm]

und in der Probe für E2 kam dasselbe raus.

Ist das nun richtig (hoffentlich) ?

Danke schon mal :)




Bezug
                                        
Bezug
Lager zweier Ebenen zueinander: Richtig!
Status: (Antwort) fertig Status 
Datum: 07:31 Mo 10.01.2005
Autor: e.kandrai

Die Gleichung deiner Schnittgerade stimmt - das Prinzip scheinst du ja verstanden zu haben ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de