www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Lagrange-Dichte der QED
Lagrange-Dichte der QED < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange-Dichte der QED: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 So 09.01.2011
Autor: waruna

Aufgabe
Schließen Sie, ob der Wechselwirkungsterm
L = [mm] e^{2}\overline{\phi}\phi A_{\mu}A^{\mu} [/mm]
lokal eichinvariant wäre.
Welchem Vertex würde er entsprechen?

Zu beweisen, dass dieser Wechselwirkungsterm nicht lokal eichinvariant ist, ist ganz einfach [mm] (\overline{\phi}\phi [/mm] ist eichinvariant, aber [mm] A_{\mu}A^{\mu} [/mm] nicht).
Ich verstehe aber nicht die zweite Frage: Welchem Vertex würde er entsprechen?
Ich weiß überhaupt nicht, was Vertex ist, kann auch in Wörterbuch und Google nicht finden.
Hilfe... :(


        
Bezug
Lagrange-Dichte der QED: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 So 09.01.2011
Autor: rainerS

Hallo!

> Schließen Sie, ob der Wechselwirkungsterm
> [mm]L = e^{2}\overline{\phi}\phi A_{\mu}A^{\mu}[/mm]
>  lokal
> eichinvariant wäre.
> Welchem Vertex würde er entsprechen?
>  Zu beweisen, dass dieser Wechselwirkungsterm nicht lokal
> eichinvariant ist, ist ganz einfach [mm](\overline{\phi}\phi[/mm]
> ist eichinvariant, aber [mm]A_{\mu}A^{\mu}[/mm] nicht).
>  Ich verstehe aber nicht die zweite Frage: Welchem Vertex
> würde er entsprechen?
> Ich weiß überhaupt nicht, was Vertex ist, kann auch in
> Wörterbuch und Google nicht finden.
> Hilfe... :(

Es geht um den Vertex, dem dieser Wechselwirkungsterm in den Feynmanregeln für die Störungstheorie entspricht.

Die QED mit Wechselwirkung lässt sich nicht geschlossen lösen, daher betrachtet man die Lösungen immer als Entwicklung nach den freien Lösungen, also den Lösungen der Feldgleichungen ohne Wechselwirkungsterm.

Ohne Wechselwirkung bewegen sich Photonen und Elektronen/Positronen frei, das entspricht den Propagatoren. Aus dem  üblichen Wechselwirkungsterm [mm] $e\gamma^\mu A_\mu\bar\phi \phi [/mm] $ wird in der Störungstheorie ein Wechselwirkungsvertex mit drei Beinen, der den drei wechselwirkenden Feldern [mm] $A_\mu$ [/mm] (Photon), [mm] $\bar\phi$ [/mm] (einlaufendes Elektron) und [mm] $\phi$ [/mm] (auslaufendes Elektron) entspricht. Der Vorfaktor [mm] $-ie\gamma^\mu$ [/mm] der Wechselwirkung wird dem Vertex zugeordnet.

Schau dazu []hier oder []hier.

Der Wechselwirkungsterm [mm]e^{2}\overline{\phi}\phi A_{\mu}A^{\mu}[/mm] enthält vier Felder, also muss ihm ein Vertex mit vier Beinen entsprechen: je ein ein- und auslaufendes Fermion und zwei Photonen.

Viele Grüße
   Rainer

Bezug
        
Bezug
Lagrange-Dichte der QED: Vertex
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:22 Mo 10.01.2011
Autor: derfrederic

Wurde bereits beantwortet ~
Meine Reaktion bitte löschen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de