www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Lagrange-Multiplikator
Lagrange-Multiplikator < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange-Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Do 12.06.2014
Autor: mimo1

Aufgabe
Sei m<n und [mm] A\in \R^{m \times n} [/mm] vom Rang m. Sei b [mm] \in \R^m. [/mm] Finde mit Hilfe von Lagrange-Multiplikatoren jene Lösung von Ax=b, für die [mm] ||x||_2 [/mm] minimal ist.

hallo zusammen,

Sei [mm] x=(x_1,...x_n) [/mm] und [mm] b=(b_1,....,b_m) [/mm] und  [mm] f(x)=||x||_2 [/mm] und g(x)=Ax-b=0 als Nebenbedingungen.

dann ist [mm] \bruch{\partial f}{\partial x_1}=\bruch{x_1}{||x||_2} [/mm]
                   [mm] \vdots [/mm]
           [mm] \bruch{\partial f}{\partial x_n}=\bruch{x_n}{||x||_2} [/mm]      

[mm] \Rightarrow [/mm] grad f= [mm] (\bruch{x_1}{||x||_2},...,\bruch{x_n}{||x||_2}) [/mm]

[mm] g(x)=Ax-b=\pmat{ a_{11}& \cdots a_{1n} \\\vdots & \vdots \\ a_{m1}& \ldots a_{mn}} \cdot \vektor{x_1 \\ \vdots\\ x_n}- \vektor{b_1\\ \vdots\\ b_m}= \vektor{\summe_{i=1}^{n}a_{1i}x_i-b_1\\ \vdots\\ \summe_{i=1}^{n}a_{mi}x_i-b_m} [/mm]

und  [mm] \bruch{\partial g}{\partial x_1}= \vektor{a_{11}\\\vdots \\ a_{m1}} [/mm]
               [mm] \vdots [/mm]
        [mm] \bruch{\partial g}{\partial x_n}= \vektor{a_{1n} \\ \vdots \\a_{mn}} [/mm]
[mm] \Rightarrow [/mm] gradg = [mm] (\vektor{a_{11}\\\vdots \\ a_{m1}},...,\vektor{a_{1n} \\ \vdots \\a_{mn}}) [/mm]

setze dann in grad f- [mm] \lambda [/mm] grad g=0

kann mir jemamnd dagen ob es bis hierhin richtig ist und kann mir jemand einen tipp geben, wie ich weitermachen kann. dankeschön im voraus.

gruß,
mimo1

        
Bezug
Lagrange-Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Fr 13.06.2014
Autor: hippias

Dass hier etwas faul ist, ist doch klar: [mm] $\nabla [/mm] g$ ist eine [mm] $m\times [/mm] n$ Matrix, aber [mm] $\nabla [/mm] f$ nicht. Wenn Du aber nachliest, dann siehst du, dass die Nebenbedingungen reellwertige Funktionen sind. Also muesstest Du Deine vektorielle Nebenbedingung in reellwertige umformulieren.

Achte auch auf die Dimensionen, denn hinsichtlich der Zeilenzahl passen Deine Gradienten nicht zusammen.

Wenn Du nun die richtigen Gleichungen aufgestellt hast, musst Du die [mm] $x_{i}$ [/mm] und [mm] $\lambda_{j}$ [/mm] berechnen.


Bezug
        
Bezug
Lagrange-Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Fr 13.06.2014
Autor: fred97

Ergänzend zu hippias:

   [mm] ||x||_2 [/mm]   wird minimal  [mm] \gdw \quad ||x||_2^2 [/mm]  wird minimal.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de