www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange, Min. und Max.
Lagrange, Min. und Max. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange, Min. und Max.: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:45 Mo 01.03.2010
Autor: pupsa

Aufgabe
f(x,y)=x*y²     und      x+2*y=0

Guten Tag,
ich hab die obere Funktion und Nebenbedingung gegeben.
Die Extremwerte hab ich nun ermittelt:
x1=1/3;
x2=1;
y1=0;
y2=1/3;

Mein Problem ist nur, dass ich nicht weiß, wie man überprüft ob das Minima oder Maxima sind.
Für eure Hilfe bin ich sehr Dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Lagrange, Min. und Max.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Mo 01.03.2010
Autor: fred97


> f(x,y)=x*y²     und      x+2*y=0
>  Guten Tag,
>  ich hab die obere Funktion und Nebenbedingung gegeben.
>  Die Extremwerte hab ich nun ermittelt:
> x1=1/3;
>  x2=1;
>  y1=0;
>  y2=1/3;


Komisch ?  Wenn man die Nebenbedingung x+2*y=0 nach y auflöst, erhält man y = - [mm] \bruch{1}{2}x. [/mm] Setzt man dies in f ein, so ergibt sich

             f(x,y) =  [mm] \bruch{1}{4}x^3 [/mm]

Diese Funktion hat aber keine Extremwerte !!!

Überprüfe noch mal die Aufgabenstellung

FRED.

>  
> Mein Problem ist nur, dass ich nicht weiß, wie man
> überprüft ob das Minima oder Maxima sind.
>  Für eure Hilfe bin ich sehr Dankbar.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Lagrange, Min. und Max.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Mo 01.03.2010
Autor: metalschulze

Genau, man kann sich auch vorstellen, das x und y Paare entlang einer Gerade der x-y-Ebene bilden. In einer Ebene über dieser Gerade liegt deine Gesamtfunktion. Diese ist dann 3.Grades und hat als solche keine Extremwerte. (Einen Sattelpunkt).

Ansonsten bildet man die partielle Ableitung nach x und nach y und sieht sich die Bedingungen für [mm] \bruch{\partial f(x,y)}{dx} [/mm] = 0 bzw. [mm] \bruch{\partial f(x,y)}{dy} [/mm] = 0 an.

Bezug
        
Bezug
Lagrange, Min. und Max.: Tippfehler?
Status: (Antwort) fertig Status 
Datum: 17:08 Mo 01.03.2010
Autor: Loddar

Hallo pupsa,

[willkommenmr] !!


> f(x,y)=x*y²     und      x+2*y=0

Kann es sein, dass es eigentlich $x+2*y \ = \ [mm] \red{1}$ [/mm] lauten soll?
Dann stimmen Deine ermittelten Werte ... zumindest fast, da die entsprechenden Zuordnungen nicht passen.


Durch Einsetzen der Nebenbedingung in die Funktion hast Du doch eine Zielfunktion mit nur noch einer Unbekannten. Also die ermittelten Werte einfach in die 2. Ableitung einsetzen.


Gruß
Loddar


Bezug
                
Bezug
Lagrange, Min. und Max.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Mo 01.03.2010
Autor: pupsa

Ja genau Loddar das ist ...=1, sorry.

Meine Zielfunktion sieht so aus:

F(x,y,ä)= x*y² + ä(x+2*y-1)  

Die 2. Ableitungen:

Fxx=0
Fyy=2*x
Fää=0

Ich komm da nicht weiter.



Bezug
                        
Bezug
Lagrange, Min. und Max.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:36 Di 02.03.2010
Autor: angela.h.b.


> Ja genau Loddar das ist ...=1, sorry.
>  
> Meine Zielfunktion sieht so aus:
>  
> F(x,y,ä)= x*y² + ä(x+2*y-1)  

Hallo,

[willkommenmr].

zunächst einmal ist festzuhalten, daß Deine beiden kritischen Punkte die Punkte (1|0) und [mm] (\bruch{1}{3}|\bruch{1}{3}) [/mm] sind. Im Eingangspost war das nicht richtig, Loddar hat Dich bereits daraufhingewiesen.


>
> Die 2. Ableitungen:
>  
> Fxx=0
>  Fyy=2*x
>  Fää=0
>  
> Ich komm da nicht weiter.

Du solltest uns mal verraten, was Du jetzt vorhast, dann ist das Helfen etwas leichter...

Möchtest Du mit der geränderten Hessematrix arbeiten? Macht Ihr das so?
Dann brauchst Du die partiellen Ableitungen [mm] F_x_x, F_x_y=F_y_x, F_y_y [/mm] und die beiden Ableitungen der Nebenbedingung g(x,y)=x+2y =1.

Dann die geränderte Matrix aufstellen und ihre Determinante in den kritischen Punkten untersuchen.

---

Ich hätte die Aufgabenstellung übrigens ganz ohne Lagrange untersucht:  aus x+2y=1 erhält man x=1-2y.
variable
Damit wird [mm] F(x,y)=xy^2 [/mm] zu F(y)= [mm] (1-2y)y^2= -2y^3 [/mm] + [mm] y^2, [/mm] und Du kannst die Funktion wie in der Schule untersuchen. Probier's mal.

Gruß v. Angela










>  
>  


Bezug
                                
Bezug
Lagrange, Min. und Max.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:12 Di 02.03.2010
Autor: pupsa

Danke Angela!
Also mit der "geänderten Hesse-Matrix" wird bestimmt ob das Minima oder Maxima sind. Danach hab ich überall gesucht und endlich fündig geworden :)

Tschüss und bis ein anderes Mal.
Eure Hilfe wird ich sicherlich irgendwann mal wieder brauchen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de