Lagrangeverfahren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:33 So 27.07.2008 | Autor: | vada |
Aufgabe | Bestimmen Sie die relatvien Extrema der Fkt.
f(x.y)=x+y u.d.NB x²+3xy+3y²=3 |
Hallo,
normalerweise habe ich keine Probleme mit dem Lagrangeverfahren, aber hier wird's etwas knifflig
Ich habe die Lagrangefkt aufgestellt nach x,y,λ abgeleiten und die ersten beiden Fkt nach λ aufgelöst und glecihgesetzt
-----> λ = 1/9xy= 1/6xy das würde bedeuten, dass 6xy=9xy aber das ist macht doch keinen Sinn! Wo könnte mein Fehler liegen?
Ich hab schon mehrere Male geprüft, ob ich mich vorher verrechnet habe, kann aber leider keinen Fehler finden.
Wo könnte das Problem sein?
Lieben Gruß
|
|
|
|
> Bestimmen Sie die relatvien Extrema der Fkt.
>
> f(x.y)=x+y u.d.NB x²+3xy+3y²=3
> Ich habe die Lagrangefkt aufgestellt nach x,y,λ
> abgeleiten und die ersten beiden Fkt nach λ aufgelöst
> und glecihgesetzt
Hallo,
es wäre ganz sinnig, würdest Du die Ergebnisse Deiner Bemühungen auch mitangeben, also Lagrangefunktion, Ableitungen, die nach [mm] \lambda [/mm] aufgelösten Gleichungen. Erstens muß man dann nicht alles selbst rechnen, und zweitens kann man gleich sehen, wo eventuelle Fehler liegen. So ist das sehr vage.
> -----> λ = 1/9xy= 1/6xy das würde bedeuten, dass
> 6xy=9xy aber das ist macht doch keinen Sinn!
Wieso nicht?
Das ist äquivalent zu 3xy=0 und daraus würde folgen, daß x=0 oder y=0, Ergebnisse, mit denen man weiterarbeiten könnte.
Ich nehme aber an, daß Du Dich bei Deinem Auflösungsmanöver vertan hast. Wenn Du wieder aufs selbe ergebnis kommst, solltest du vorrechnen, ich bekomme jedenfalls was anderes.
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:02 So 27.07.2008 | Autor: | vada |
Ok also hier meine Rechnungen:
L(x,y,λ)= x²+2xy+λ(1.5x+y-6)
1. nach x abgeleitet
---> 2x+2y+1.5λ=0 --->1,5λ=-2x-2y ---> λ=(-2x-2y)/1.5
2. nach y abgeleitet
---> 2x+λ= 0 ---> λ=2x aus 1. und 2. 2x=(-2x-2y)/1.5 --> 3x=-2x-2y
---> x=-2y/5
3. nach λ abgeleitet
---> 1.5x+y-6=0
x=-2y/5 Einsetzen in 3.
1.5*(-2y/5)+y=6 --> y=-15 und ---> x=6. Das sind meine Ergebnisse, nur leider stimmt es nicht mit der Kurzlösung überein.
Wo könnte der Fehler sein?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:10 So 27.07.2008 | Autor: | vada |
Oh Sorry, jetzt war ich gerade bei einer ganz anderen Aufgabe.
Eigentlich ging es ja um diese Aufgabe:
L(x,y,λ)=x+y+λ(x²+3xy+3y²-3)
1. nach x abgeleitet
1+2λx+3λy=0 --> λ=-1/6xy
2. nach y abgeleitet
1+3λx+6λy=0 --> λ=-1/9xy
3. nach λ abgeleitet
x²3xy+3y²-3=0
aus 1. und 2. --> -1/6xy=-1/9xy. Ich vermute, dass sich bis hier schon irgendwo ein Fehler eingeschlichen hat, kann nur nichts finden.
|
|
|
|
|
> Oh Sorry, jetzt war ich gerade bei einer ganz anderen
> Aufgabe.
>
> Eigentlich ging es ja um diese Aufgabe:
Hallo,
ja, das dachte ich eigentlich auch...
>
> L(x,y,λ)=x+y+λ(x²+3xy+3y²-3)
>
> 1. nach x abgeleitet
>
> 1+2λx+3λy=0
richtig
> --> λ=-1/6xy
falsch.
Rechne in kleinen Einzelschritten vor.
Gruß v. Angela
>
> 2. nach y abgeleitet
>
> 1+3λx+6λy=0 --> λ=-1/9xy
>
> 3. nach λ abgeleitet
>
> x²3xy+3y²-3=0
>
> aus 1. und 2. --> -1/6xy=-1/9xy. Ich vermute, dass sich bis
> hier schon irgendwo ein Fehler eingeschlichen hat, kann nur
> nichts finden.
>
>
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:59 So 27.07.2008 | Autor: | vada |
So habs nochmal versucht:
1+2λx+3λy=0 --> 2λx+3λy=-1 / : 2x 3y
λ+λ= -1/(2x*3y) /:2 λ=-1/12xy
aber ich denke das stimmt nicht?! Ich steh echt auf'm Schlauch
|
|
|
|
|
> So habs nochmal versucht:
>
> 1+2λx+3λy=0 --> 2λx+3λy=-1 / : 2x 3y
>
> λ+λ= -1/(2x*3y) /:2 λ=-1/12xy
>
> aber ich denke das stimmt nicht?!
Hallo,
das, was Du da tust, ist einfach nur grauenhaft.
Lös mal als kleine Vorübung die Gleichung [mm] 1+5\lambda [/mm] + [mm] 7\lambda=0 [/mm] nach [mm] \lambda [/mm] auf.
Zu Deiner Rechnung:
> 1+2λx+3λy=0
> --> 2λx+3λy=-1 / : 2x 3y
Das mit dem Rüberbringen der 1 ist noch gut.
Du scheinst kein großer Rechenkünstler zu sein, daher warne ich Dich eindringlich davor, mehrere Schritte auf einmal zu machen.
Wir nehmen jetzt mal Deine letzte Gleichung 2λx+3λy=-1 und dividieren sie durch 3x.
Wenn wir das tun (Wir machen das nur zu Übungszwecken!), so müssen wir notieren [mm] "x\not=0" [/mm] und diesen Fall später untersuchen. Denn durch 0 darf man nicht teilen.
Das kommt raus: [mm] \bruch{2\lambda x+3\lambda y}{3x}=\bruch{-1}{3x} [/mm] <==> [mm] \bruch{2}{3}+\bruch{y}{x}=\bruch{-1}{3x}
[/mm]
Hierüber solltest Du mal ein bißchen meditieren.
Da es nun etwas unschön wäre, wenn ich Dir nur zeige, wie man es ungeschickt aber richtig angehen würde, will ich Dir auch noch sagen, wie man es richtig anfangen würde:
Wir starten mit 2λx+3λy=-1.
Jetzt schau mal die rechte Seite an. Wir haben da 2x-mal das [mm] \lambda, [/mm] was zu 3y-mal [mm] \lambda [/mm] addiert wird.
Das ist genau wie 2x Äpfel plus 3y Äpfel, dies wiederum funktioniert genauso wie 2*5 Äpfel plus 3*7 Äpfel.
Ich habe die große Hoffnung, daß Du die Äpfel addieren kannst und anschließend auch die lambdas.
Gruß v. Angela
>
> λ+λ= -1/(2x*3y) /:2 λ=-1/12xy
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:19 So 27.07.2008 | Autor: | vada |
Na also zuerst zu deiner Übung:
1+5λ+7λ=0
12λ=-1 ---> λ=-1/12
also:
2λx+3λy=-1 / : x
2λ+3λy=-1/x / :y
5λ=-1/xy / :5
λ= -1/5xy
Das Problem ist , dass ich bei meiner zweiten Gleichung auf λ=-1/9xy komme
wenn ich das Ganze gleichsetze komme ich auf 5xy=9xy
Die Lösung verät aber, dass (-3,1) (3,-1) als möglich Extremstellen, d.h. meine Gleichung ist falsch. Ich verzweifel noch an dieser Aufgabe :-( !
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:31 So 27.07.2008 | Autor: | vada |
Na also zuerst zu deiner Übung:
1+5λ+7λ=0
12λ=-1 ---> λ=-1/12
also:
2λx+3λy=-1 / : x
2λ+3λy=-1/x / :y
5λ=-1/xy / :5
λ= -1/5xy
Das Problem ist , dass ich bei meiner zweiten Gleichung auf λ=-1/9xy komme
wenn ich das Ganze gleichsetze komme ich auf 5xy=9xy
Die Lösung verät aber, dass (-3,1) (3,-1) als möglich Extremstellen, d.h. meine Gleichung ist falsch. Ich verzweifel noch an dieser Aufgabe :-( !
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:41 So 27.07.2008 | Autor: | abakus |
> Na also zuerst zu deiner Übung:
>
>
> 1+5λ+7λ=0
> 12λ=-1 ---> λ=-1/12
Aha, du hast [mm] \lambda [/mm] ausgeklammert. Merken für später...!!!
>
>
> also:
>
> 2λx+3λy=-1 / : x
> 2λ+3λy=-1/x
Beim beidseitigen dividieren von x ergibt aber [mm] 2*\lambda+\bruch{3*\lambda}{x}y=-1/x [/mm]
Schau noch einmal die obige "Übung" an.
Gruß Abakus
> 5λ=-1/xy / :5
> λ= -1/5xy
>
>
> Das Problem ist , dass ich bei meiner zweiten Gleichung auf
> λ=-1/9xy komme
>
> wenn ich das Ganze gleichsetze komme ich auf 5xy=9xy
>
> Die Lösung verät aber, dass (-3,1) (3,-1) als möglich
> Extremstellen, d.h. meine Gleichung ist falsch. Ich
> verzweifel noch an dieser Aufgabe :-( !
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:05 So 27.07.2008 | Autor: | vada |
Na gut, endlich !!
2λx+3λy=-1
λ(2x+3y)=-1 / : 2x+3y
λ=-1/2x+3y
Ich weiß gerade auch nicht was bei mir los war, dass ich nicht darauf gekommen bin. Sowas kommst sonst ganz automatisch.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:15 So 27.07.2008 | Autor: | abakus |
> Na gut, endlich !!
>
> 2λx+3λy=-1
> λ(2x+3y)=-1 / : 2x+3y
> λ=-1/2x+3y
>
> Ich weiß gerade auch nicht was bei mir los war, dass ich
> nicht darauf gekommen bin. Sowas kommst sonst ganz
> automatisch.
>
Es ist heute sehr warm.
>
Vergiss nicht, sowohl im Rechenbefehl als auch im Ergebnis eine Klammer um (2x+3y) zu setzen.
Gruß Abakus
|
|
|
|
|
> Ok also hier meine Rechnungen:
>
>
> L(x,y,λ)= x²+2xy+λ(1.5x+y-6)
Hallo,
??? ??? ???
Wo kommt diese Lagrangefunktion her?
Zu der Aufgabe, die Du im Eingansthread präsentierst, paßt sie nicht...
Aber wir sind ja flexibel, berechnen wir also die Extremwerte von f(x,y)=x²+2xy unter der NB .5x+y=6.
>
> 1. nach x abgeleitet
>
> ---> 2x+2y+1.5λ=0 --->1,5λ=-2x-2y --->
> λ=(-2x-2y)/1.5
>
richtig.
> 2. nach y abgeleitet
>
> ---> 2x+λ= 0
richtig
---> λ=2x
falsch .
Der Rest muß dann ja falsch werden.
Gruß v. Angela
|
|
|
|