www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Langrange'schen Multiplikatore
Langrange'schen Multiplikatore < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Langrange'schen Multiplikatore: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Mi 14.01.2009
Autor: cleaner1

Aufgabe
Untersuchen sie die Funktion [mm] f(x,y)=\bruch{1}{x}+\bruch{1}{y} [/mm] mit x [mm] \not= [/mm] 0,  y [mm] \not= [/mm] 0. Führen Sie unter der Nebenbedingung [mm] \bruch{1}{x^2}+\bruch{1}{y^2}=\bruch{1}{a^2} [/mm] mit a=const. [mm] \not= [/mm] 0 bei Verwenung der Langrange'schen Multiplikatoren eine Extremwetbestimmung durch. Vereinfachen Sie das Ergebnis soweit wie möglich.

Ich habe wieder mal ein Problem ;-) aber ich denke für euch ist es bestimmt wiedermal kein Problem.

Ich schreibe meine bisherige Lösung auf.

[mm] f(x,y)=\bruch{1}{x}+\bruch{1}{y} [/mm]
[mm] g(x,y)=\bruch{1}{x^2}+\bruch{1}{y^2}-\bruch{1}{a^2} [/mm]

Langrange

[mm] h(x,y,a,\lambda)=f(x,y)+\lambda [/mm] * g(x,y)

[mm] hx=-x^{-2}+2x{-3}*\lambda [/mm]
[mm] hy=-y^{-2}+2y{-3}*\lambda [/mm]
[mm] ha=2a^{-3}*\lambda [/mm]
[mm] h\lambda=\bruch{1}{x^2}+\bruch{1}{y^2}-\bruch{1}{a^2} [/mm]

dann stelle ich die erste Gleichung nach [mm] \lambda [/mm] umstelle bekomme ich
[mm] \lambda=\bruch{x^{-2}}{-2x^{-3}}=\bruch{1}{-2x} [/mm]


aber das bringt mich alles nicht weiter vielleicht hat ja jemand einen tipp oder ich habe vielleicht schon vorher einen fehler gemacht.

        
Bezug
Langrange'schen Multiplikatore: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Mi 14.01.2009
Autor: HJKweseleit


> Untersuchen sie die Funktion
> [mm]f(x,y)=\bruch{1}{x}+\bruch{1}{y}[/mm] mit x [mm]\not=[/mm] 0,  y [mm]\not=[/mm] 0.
> Führen Sie unter der Nebenbedingung
> [mm]\bruch{1}{x^2}+\bruch{1}{y^2}=\bruch{1}{a^2}[/mm] mit a=const.
> [mm]\not=[/mm] 0 bei Verwenung der Langrange'schen Multiplikatoren
> eine Extremwetbestimmung durch. Vereinfachen Sie das
> Ergebnis soweit wie möglich.
>  
> Ich habe wieder mal ein Problem ;-) aber ich denke für euch
> ist es bestimmt wiedermal kein Problem.
>  
> Ich schreibe meine bisherige Lösung auf.
>  
> [mm]f(x,y)=\bruch{1}{x}+\bruch{1}{y}[/mm]
>  [mm]g(x,y)=\bruch{1}{x^2}+\bruch{1}{y^2}-\bruch{1}{a^2}[/mm]
>  
> Langrange
>  
> [mm]h(x,y,a,\lambda)=f(x,y)+\lambda[/mm] * g(x,y)

  
  [mm]h_x=-x^{-2}\red{-}2x^{-3}*\lambda\red{=0}[/mm]
  [mm]h_y=-y^{-2}\red{-}2y^{-3}*\lambda\red{=0}[/mm]
  


> dann stelle ich die erste Gleichung nach [mm]\lambda[/mm] umstelle
> bekomme ich

  [mm] \red{\lambda=\bruch{-x}{2}} [/mm] und [mm] \red{\lambda=\bruch{-y}{2}} [/mm] und somit [mm] \red{x = y}. [/mm]

Das in die Nebenbedingung eingesetzt gibt
[mm]\bruch{1}{x^2}+\bruch{1}{x^2}=\bruch{2}{x^2}=\bruch{1}{a^2}[/mm] und damit [mm] x=y=a\wurzel{2} [/mm]




Bezug
                
Bezug
Langrange'schen Multiplikatore: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Mi 14.01.2009
Autor: cleaner1

Oh vielen dank schon mal. Da habe ich beim abschreiben der Gleichungen ja auch noch ein paar Fehler gemacht, aber vor allem beim umstellen nach [mm] \lambda. [/mm]

Ich habe es aber noch nicht ganz kapiert wie das geht magst du mir das vielleicht einmal erklären wie ich das richtig umstelle?

Bezug
                        
Bezug
Langrange'schen Multiplikatore: Antwort
Status: (Antwort) fertig Status 
Datum: 23:21 Mi 14.01.2009
Autor: Martinius

Hallo,

deine Lagrange-Funktion war nicht richtig. a ist keine Variable. Und dann hattest Du noch falsch abgeleitet.

[mm] $L(x,y,\lambda)=\bruch{1}{x}+\bruch{1}{y}+\lambda*\left( \bruch{1}{x^2}+\bruch{1}{y^2}-\bruch{1}{a^2}\right)$ [/mm]

Nun leite 3 mal partiell ab und setze da Ergebnis gleich Null:

[mm] L_x [/mm] = ... = 0

[mm] L_y [/mm] = ... = 0

[mm] L_{\lambda} [/mm] = ... = 0

Aus den ersten 2 Ableitungen bastelst Du eine neue Gleichung, indem Du [mm] \lambda [/mm] sobald als möglich elimierst.

[mm] \lambda [/mm] wird nicht mehr benötigt.

Dann schaust Du, was dir diese Gleichung in Zusammenhang mit der Nebenbedingung (3. partielle Ableitung) sagt.


LG, Martinius



Bezug
                                
Bezug
Langrange'schen Multiplikatore: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:51 Mi 14.01.2009
Autor: cleaner1

Danke ich werde es morgen in neuer frische mal durchrechnen! Ich melde mich dann wieder wenn ich ein Problem bekomme.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de