www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Laplace mit Heaviside-Funktion
Laplace mit Heaviside-Funktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace mit Heaviside-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Fr 21.01.2011
Autor: M-Ti

Guten Abend!

Ich bereite mich gerade auf meine 1. DGL-Klausur vor und habe gerade ein paar alte Klausuren meines Profs gefunden.

Folgende Aufgabe macht mir Probleme, ich hoffe Ihr könnt helfen:

Ich soll die Laplace Transformierte T(f)(s) der Funktion f(t)=1-H(t-2) mit der HeavisideFunktion H=H(t) berechnen und dann T(f)(0) angeben.

Hab nun ein wenig im Internet recherschiert, die Heaviside-Funktion ist wohl eine Sprungfunktion:

[mm] H(t)=\begin{cases} 0, & \mbox{für} t>0 \\ 0, & \mbox{für} t\le\end{cases} [/mm]

Kann mir bitte jemand anhand dieser Aufgabe erklären, was man hier machen muss? Laplace transformieren kann ich eigentlich, aber ich weiss nicht wie und wo ich das hier einbinden soll.

Besten Dank
Michi

        
Bezug
Laplace mit Heaviside-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Fr 21.01.2011
Autor: M-Ti

Ist die Laplace-Transformierte einfach:

[mm] F(s)=\bruch{1}{s}-\bruch{1}{s}*e^{-2s} [/mm]

Ich hab das jetzt mit einer Formelsammlung gemacht, aber in der Aufgabe steht "berechne". Wie kommt man darauf (wenn das überhaupt richtig ist)?

Was wäre denn dann? T()(f)(0)?

Wenn ich das einsetze in: [mm] F(s)=\bruch{1}{s}-\bruch{1}{s}*e^{-2s} [/mm]

--> man darf ja nicht durch Null teilen...

Kann bitte jemand weiterhelfen? Vielen Dank

Bezug
        
Bezug
Laplace mit Heaviside-Funktion: Einheitssprung
Status: (Antwort) fertig Status 
Datum: 09:16 Sa 22.01.2011
Autor: Infinit

Hallo Michi,
Dein Ergebnis ist schon richtig. Inwieweit man das berechnen soll oder ob man die richtigen Angaben aus der Transformationstabelle heraussuchen soll, das musst Du wissen.
Die Laplace-Transformierte des Einheitssprunges, der übrigens 1 ist für Zeitwerte größer Null, kannst Du direkt aus der Definition der Laplace-Transformierten bestimmen.
[mm] L (Einheitssprung) = \int_0^{\infty} 1 e ^{-st} \, ds = \bruch{e^{-st}}{-s} |_0^{\infty} = \bruch{1}{s} [/mm]
Bei der Zeitverschiebung kommt dann der Verschiebungssatz ins Spiel.
Viele Grüße,
Infinit

P.S.: Rechteckfunktionen gibt es in der E-Technik wie Sand am Meer und damit hast Du deren Laplace-Transformierte bestimmt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de