www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Laplacetransformation
Laplacetransformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplacetransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Sa 26.01.2008
Autor: ebarni

Aufgabe
Gesucht ist die Laplace-Transformierte der Zeitfunktion:

[mm] f(t) = cosh\alpha t * cosh\beta t[/mm]

[mm]\alpha, \beta \in \IC [/mm]  

Hallo zusammen:

Mit: [mm]cosh\alpha t = \bruch{e^{\alpha t} + e^{-\alpha t}}{2}[/mm]

erhalte ich:

[mm] f(t) = \bruch{e^{\alpha t} + e^{-\alpha t}}{2} * cosh\beta t[/mm]

[mm] f(t) = \bruch{1}{2}*(e^{\alpha t}*cosh\beta t + e^{-\alpha t}*cosh\beta t) [/mm]

Mit der Dämpfungsregel:

[mm]L[e^{\alpha t}f(t)](s) = L[f(t)]*(s-\alpha) [/mm]

erhalte ich:

[mm]L[f(t)](s) = \bruch{1}{2}*[L[cosh\beta t](s-\alpha) + L[cosh\beta t](s+\alpha)] [/mm]

Die laplace-Transformierte von [mm] cosh\beta t [/mm] ist [mm]\bruch{s}{s^{2}-\beta^{2}}[/mm] also:

[mm]L[f(t)](s) = \bruch{1}{2}*[\bruch{s}{s^{2}-\beta^{2}}*(s-\alpha) + \bruch{s}{s^{2}-\beta^{2}}*(s+\alpha)][/mm]

[mm]L[f(t)](s) = \bruch{1}{2}*[\bruch{s^{2}-s\alpha}{s^{2}-\beta^{2}} + \bruch{s^{2}+s\alpha}{s^{2}-\beta^{2}}][/mm]

[mm]L[f(t)](s) = \bruch{1}{2}*[\bruch{s^{2}-s\alpha+s^{2}+s\alpha}{s^{2}-\beta^{2}} ][/mm]

[mm]L[f(t)](s) = \bruch{1}{2}*[\bruch{2*s^{2}}{s^{2}-\beta^{2}} ][/mm]

[mm]L[f(t)](s) = \bruch{s^{2}}{s^{2}-\beta^{2}}[/mm]

Kann das stimmen? Laut Skript kommt ein anderes Ergebnis heraus, aber mein Lösungsweg scheint mir plausibel zu sein. Habe ich irgendwo einen Fehler?

Viele Grüße, Andreas



        
Bezug
Laplacetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Mo 28.01.2008
Autor: rainerS

Hallo Andreas!

> Gesucht ist die Laplace-Transformierte der Zeitfunktion:
>  
> [mm]f(t) = cosh\alpha t * cosh\beta t[/mm]
>
> [mm]\alpha, \beta \in \IC[/mm]
> Hallo zusammen:
>  
> Mit: [mm]cosh\alpha t = \bruch{e^{\alpha t} + e^{-\alpha t}}{2}[/mm]
>
> erhalte ich:
>  
> [mm]f(t) = \bruch{e^{\alpha t} + e^{-\alpha t}}{2} * cosh\beta t[/mm]
>
> [mm]f(t) = \bruch{1}{2}*(e^{\alpha t}*cosh\beta t + e^{-\alpha t}*cosh\beta t)[/mm]
>  
> Mit der Dämpfungsregel:
>  
> [mm]L[e^{\alpha t}f(t)](s) = L[f(t)]*(s-\alpha)[/mm]

Das ist nicht richtig. Da steht nicht "multipliziert mit [mm](s-\alpha)[/mm], sondern "an der Stelle [mm](s-\alpha)[/mm]: ist F(s) die Laplacetransformierte von f(t) so ist [mm]F(s-\alpha)[/mm] die Laplacetransformierte von [mm]e^{\alpha t}f(t)[/mm].

Du kannst es dir viel einfacher machen, in dem du beide [mm]\cosh[/mm] als Exponentialfunktionen schreibst, zusammenfasst, die Laplacetransformierten der vier entstehenden Summanden ausrechnest und die Brüche auf den Hauptnenner bringst.

Viele Grüße
   Rainer

Bezug
                
Bezug
Laplacetransformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:40 Mo 28.01.2008
Autor: ebarni

Hallo Rainer!

Vielen Dank für Deine Antwort.

> Du kannst es dir viel einfacher machen, in dem du beide
> [mm]\cosh[/mm] als Exponentialfunktionen schreibst, zusammenfasst,
> die Laplacetransformierten der vier entstehenden Summanden
> ausrechnest und die Brüche auf den Hauptnenner bringst.
>  
> Viele Grüße
>     Rainer

OK, soweit klar. Damit wird es also insgesamt zu:

[mm] f(t) = \bruch{e^{\alpha t} + e^{-\alpha t}}{2} * \bruch{e^{\beta t} + e^{-\beta t}}{2} [/mm]

[mm] f(t)=\bruch{1}{4}*[(e^{\alpha t} + e^{-\alpha t}}) * ({e^{\beta t} + e^{-\beta t}})] [/mm]

[mm] f(t)=\bruch{1}{4}*(e^{\alpha t}*e^{\beta t} + e^{\alpha t}*e^{-\beta t} + e^{-\alpha t}*e^{\beta t} + e^{-\alpha t}*e^{-\beta t}) [/mm]

[mm] f(t)=\bruch{1}{4}*(e^{t*(\alpha+\beta}) + e^{t*(\alpha-\beta}) + e^{t*(-\alpha+\beta)} + e^{t*(-\alpha-\beta)}) [/mm]

[mm] f(t)=\bruch{1}{4}*(e^{-t*(-\alpha-\beta}) + e^{-t*(-\alpha+\beta}) + e^{-t*(\alpha-\beta)} + e^{-t*(\alpha+\beta)}) [/mm]

Die Zeitfunktion [mm] f(t)=e^{-t*a} [/mm] ergibt ja die Bildfunktion [mm] F(s) = \bruch{1}{s+a} [/mm].

Damit ergibt sich insgesamt:

[mm] L(s) = \bruch{1}{4}* [\bruch{1}{s-\alpha-\beta} + \bruch{1}{s-\alpha+\beta} + \bruch{1}{s+\alpha-\beta} + \bruch{1}{s+\alpha+\beta}][/mm]

Ist das korrekt? Aber wie sieht der Hauptnenner aus?

Viele Grüße und noch Mal: vielen Dank!

Andreas


Bezug
                        
Bezug
Laplacetransformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 So 03.02.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de