Laplacetransformation Sprung < Regelungstechnik < Ingenieurwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:50 Fr 25.01.2008 | Autor: | IceCube |
Hallo,
ich habe folgendes Problem:
Wenn ich eine DGL folgender Form habe:
[mm] y''+a_1y'+a_0y = u' + u [/mm]
und dann die Laplacetrafo durchführe, bekomme ich für die rechte Seite:
[mm]...=-u(0)+s*u(s)+u(s)[/mm]
Jetzt möchte ich den Einheitssprung auf das System geben:
h(t) = 1 für t>0
h(t) = 0 für t [mm] \le [/mm] 0
Laplastrafo [mm] (h(t))=\bruch{1}{s} [/mm]
einsetzen: [mm]
...=-0+\bruch{1}{s}*s+\bruch{1}{s}=\bruch{s+1}{s}
[/mm]
Würde ich h(t) allerdings erst einsetzen und dann transformieren, hätte ich:
[mm] h'(t)+h(t)=1[/mm]
Transformieren:
[mm]Laplacetrafo(1)=\bruch{1}{s} \not= \bruch{s+1}{s}[/mm]????
Wäre super, wenn mir jemand helfen könnte, ich versteh nicht wo mein Fehler ist.
Viele Grüße
Philipp
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:40 Sa 26.01.2008 | Autor: | dotwinX |
Ich glaube ich verstehe nicht genau was du meinst.
Also wenn du ein Einheitssprung auf ein System geben willst musst du erstmal das System beschreiben. Dies geschied durch die Übertragungsfunktion G(s)=Ausgang/Eingang
Diese Gleichung hast du ja noch gar nicht erstellt.
Einen Einheitssprung auf das System geben heißt ja das du den Eingang 1/s setzt und dann nach dem Ausgang umstellst (um zu sehen wie das System reagiert)
Ich hoffe das beantwortet inetwa deine Frage
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:09 Sa 26.01.2008 | Autor: | IceCube |
Hi, vielen Dank für deine Antwort.
Also die System-Dgl habe ich oben angegeben. Aus dieser bekomme
ich durch Laplacetrafo eine Gleichung im s-Bereich. Diese Gleichung kann ich nach y(s)=G(s)*u(s)+Anfangswerte umformen. Mein Problem ist die Laplacetransformation der rechten Seite der oben genannten Dgl:
...=u'(t)+u(t). Ich könnte erst die rechte Seite in den Laplace-Bereich transformieren (s.o.). Anschließend würde ich in meine transformierte Gleichung meinen transformierten Einheitssprung 1/s mit den Anfangsbedingungen einsetzen. Oder ich könnte den Einheitssprung h(t) zuerst im Zeitbereich einsetzen und die Dgl. anschließend transformieren. Dann steht auf der rechten Seite nur noch ...=1 Das müsste ja eigentlich das selbe Ergebnis bringen.
Also nochmal kurz:
1. Laplacetrafo 2. 1/s einsetzen sollte das gleiche sein wie:
1. h(t) einsetzen 2. Lapalcetrafo
ist es aber nicht
Hoffe es ist jetzt besser zu verstehen.
|
|
|
|
|
Wie kommst du auf $ h'(t)+h(t)=1 $ ? Wenn $h(t)$ der Einheitssprung ist, ist seine Ableitung der Dirac-Impuls, also $h'(t) + h(t) = [mm] \delta(t) [/mm] + [mm] \sigma(t)$. [/mm] Transformierts du die linke Seite nun, steht wieder das gleiche da, wie wenn du die Transformierte ableitest, also
[mm] $\mathcal{L}\{ \delta(t) + \sigma(t) \} [/mm] = 1 + [mm] \frac{1}{s} [/mm] = [mm] \frac{s+1}{s}$ [/mm] .
|
|
|
|