www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Laufzeit
Laufzeit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laufzeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:46 Sa 07.04.2012
Autor: bandchef

Aufgabe
Folgern Sie, dass eien rekursive Implementierung zur Berechnung der Fibonacci-Zahlen die Laufzeit $T(n) = [mm] \Theta(\frac{1+\sqrt{5}}{2})$ [/mm] hat.

Ich hab da jetzt mal so angefangen:

Es ist ja die genaue Schranke [mm] $\Theta$ [/mm] gefordert also muss ich die obere Schranke O und die untere [mm] $\Omega$ [/mm] untersuchen.

[mm] $\underbrace{T(n)}_{=g(n)} [/mm] = [mm] \Theta\left(\underbrace{\frac{1+\sqrt{5}}{2}}_{=f(n)}\right)$ [/mm]



1. Fall, obere Schranke O:

[mm] $\Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} \leq [/mm] c [mm] \Leftrightarrow \lim_{n \to \infty} \frac{T(n)}{\frac{1+\sqrt{5}}{2}} \leq [/mm] c [mm] \Leftrightarrow \lim_{n \to \infty} \frac{2 \cdot T(n)}{1+\sqrt{5}} \leq [/mm] c$

$2 [mm] \cdot [/mm] T(n)$ geht gegen unendlich. Unendlich geteilt durch [mm] $1+\sqrt{5}$ [/mm] wird wohl immer noch unendlich bleiben. Somit ist wohl auch kein c zu finden, dass größer dem Unendlich sein wird. Der 1. Fall ist also schon mal falsch...



2. Fall, untere Schranke [mm] $\Omega$: [/mm]

[mm] $\Rightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} \geq [/mm] c [mm] \Leftrightarrow \lim_{n \to \infty} \frac{T(n)}{\frac{1+\sqrt{5}}{2}} \geq c\Leftrightarrow \lim_{n \to \infty} \frac{2 \cdot T(n)}{1+\sqrt{5}} \geq [/mm] c$

$2 [mm] \cdot [/mm] T(n)$ geht gegen unendlich. Unendlich geteilt durch [mm] $1+\sqrt{5}$ [/mm] wird wohl immer noch unendlich bleiben. Da hier aber nun c kleiner gleich dem Term auf der linken Seite sein soll, kann man ein c finden das passt. Aber: Da bei [mm] $\Theta$ [/mm] beide Fälle stimmen müssen, kann es nicht mehr passen, da der 1. Fall schon falsch war.



Ich hab zwar hier jetzt so eine Betrachtung gemacht, aber ich weiß nicht, ob das das geforderte war... Wie versteht ihr die Aufgabe?

        
Bezug
Laufzeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 So 08.04.2012
Autor: felixf

Moin!

> Folgern Sie, dass eien rekursive Implementierung zur
> Berechnung der Fibonacci-Zahlen die Laufzeit [mm]T(n) = \Theta(\frac{1+\sqrt{5}}{2})[/mm]
> hat.

Ein kleiner Tipp: da sollte $T(n) = [mm] \Theta((\frac{1+\sqrt{5}}{2})^n)$ [/mm] stehen. Also mit dem "Hoch $n$". Ohne das funktioniert es nicht.

(Kennst du die []Formel von Moire-Binet? Damit ist es recht einfach.)

LG Felix


Bezug
        
Bezug
Laufzeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 09.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de