www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Laufzeit Alogrithmen
Laufzeit Alogrithmen < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laufzeit Alogrithmen: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:53 Sa 07.01.2017
Autor: Franhu

Aufgabe
Ab welcher Input-Grösse (Anzahl Datenelemente) ist Algorithmus a schneller als Algorithmus b?
Algorithmus a: T(10'000) = 400ms und f(n) = [mm] n^2 [/mm]
Algorithmus b: T(10'000) = 240ms und f(n) = n * log(n)

Hallo Zusammen

Für die Berechnung von der Laufzeit kenne ich folgende Formel:

[mm] \bruch{T(n)}{T(n_{1})} [/mm] = [mm] \bruch{f(n)}{f(n_{1})} [/mm]

Damit kann ich zum Beispiel die Laufzeit für Alogrithmus a bei n = 100'000 Elementen berechnen.

Ich möchte nun wissen, ab welcher Menge n Algorithmus a von Algorithmus b überholt wird. Wie muss ich die Gleichung gleichsetzen, ich steh grad voll auf der Leitung.

Danke für eure Hife.

Lg Franhu

        
Bezug
Laufzeit Alogrithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Sa 07.01.2017
Autor: Diophant

Hallo,

> Ab welcher Input-Grösse (Anzahl Datenelemente) ist
> Algorithmus a schneller als Algorithmus b?
> Algorithmus a: T(10'000) = 400ms und f(n) = [mm]n^2[/mm]
> Algorithmus b: T(10'000) = 240ms und f(n) = n * log(n)
> Hallo Zusammen

>

> Für die Berechnung von der Laufzeit kenne ich folgende
> Formel:

>

> [mm]\bruch{T(n)}{T(n_{1})}[/mm] = [mm]\bruch{f(n)}{f(n_{1})}[/mm]

>

> Damit kann ich zum Beispiel die Laufzeit für Alogrithmus a
> bei n = 100'000 Elementen berechnen.

>

Über die Gültigkeit der Formel kann ich dir ad hoc gerade nichts sagen (gehen wir davon aus, dass sie stimmt). Was muss dann für den Quotienten

[mm] \frac{f(n)}{f(n_1)}[/mm]

gelten, wenn bspw. f(n) [mm] \supset f(n_1) [/mm] ist? Dabei wäre eigentlich nur noch zu beachten, dass alle beteiligten Werte hier offensichtlich positiv sind.

> Ich möchte nun wissen, ab welcher Menge n Algorithmus a
> von Algorithmus b überholt wird. Wie muss ich die
> Gleichung gleichsetzen, ich steh grad voll auf der
> Leitung.

Betrachte es nicht als Gleichung, sondern als Ungleichung.


Gruß, Diophant

Bezug
        
Bezug
Laufzeit Alogrithmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Sa 07.01.2017
Autor: HJKweseleit


> Ab welcher Input-Grösse (Anzahl Datenelemente) ist
> Algorithmus a schneller als Algorithmus b?
>  Algorithmus a: T(10'000) = 400ms und f(n) = [mm]n^2[/mm]
>  Algorithmus b: T(10'000) = 240ms und f(n) = n * log(n)
>  Hallo Zusammen
>  
> Für die Berechnung von der Laufzeit kenne ich folgende
> Formel:
>  
> [mm]\bruch{T(n)}{T(n_{1})}[/mm] = [mm]\bruch{f(n)}{f(n_{1})}[/mm]
>  
> Damit kann ich zum Beispiel die Laufzeit für Alogrithmus a
> bei n = 100'000 Elementen berechnen.

[mm]\bruch{T_a(n)}{T_a(n_{1})}[/mm] = [mm]\bruch{f_a(n)}{f_a(n_{1})}[/mm]  sowie  [mm]\bruch{T_b(n)}{T_b(n_{1})}[/mm] = [mm]\bruch{f_b(n)}{f_b(n_{1})}[/mm]  mit [mm] n_1=10.000. [/mm]

Dabei soll n die gesuchte Anzahl sein, bei der [mm] T_a(n)=T_b(n) [/mm] wird.

Also:[mm]T_a(n)=T_a(n_{1})*\bruch{f_a(n)}{f_a(n_{1})}[/mm]  sowie  [mm]T_b(n)=T_b(n_{1})*\bruch{f_b(n)}{f_b(n_{1})}[/mm]  mit [mm] n_1=10.000 [/mm] und .

[mm] T_a(n)=T_b(n), [/mm] also [mm]T_a(n_{1})*\bruch{f_a(n)}{f_a(n_{1})}[/mm]  = [mm]T_b(n_{1})*\bruch{f_b(n)}{f_b(n_{1})}[/mm]


[mm]400*\bruch{n^2}{10.000^2}[/mm]  = [mm]240*\bruch{n*ln(n)}{10.000*ln(10.000)}[/mm]


[mm]\bruch{400*ln(10.000)}{240*10.000}[/mm]  = [mm]\bruch{ln(n)}{n}[/mm]

Als Näherungslösung (Intervallschachtelung, Newtonsches Näherungsverfahren...) erhältst du für n ungefähr den Wert 1, d.h., nur unter 1 (also: gar nicht) ist a schneller als b.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de