www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Laufzeitkomplexität
Laufzeitkomplexität < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laufzeitkomplexität: Naive Suche
Status: (Frage) überfällig Status 
Datum: 19:28 Mo 11.06.2012
Autor: bandchef

Aufgabe
Zeigen Sie, dass der Algorithmus NaiveSearch im Average Case Laufzeit [mm] $\Theta(n)$ [/mm] hat. Nehmen
Sie hierzu an, dass sowohl der Text der Länge n als auch das Muster der Länge m zufällig
und gleichverteilt aus einem Alphabet mit [mm] $|\Sigma| \geq [/mm] 2$ Buchstaben gewählt werden. Die Aussage
folgt sofort, wenn Sie zeigen, dass die erwartete Anzahl an Buchstaben-Vergleichen durch
folgende Formel gegeben ist:


$(n-m+1) [mm] \cdot \frac{1-|\Sigma|^{-m}}{1-|\Sigma|^{-1}} \leq [/mm] 2(n-m+1) = [mm] \Theta(n)$ [/mm]



Hi Leute!

Wie die Aufgabe sagt, soll ich ja durch Umformung dieses Terms die gegebene Laufzeitkomplexität einer naiven Suche verifizieren. Ich hab dann mal soweit es mir möglich umgeformt:

$(n-m+1) [mm] \cdot \frac{1-|\Sigma|^{-m}}{1-|\Sigma|^{-1}} \leq [/mm] 2(n-m+1) = [mm] \Theta(n)$ [/mm]

An dieser Stelle bringe $(n-m+1)$ auf die andere Seite. Ich denke man muss Ungleichheitszeichen nicht drehen, da der zu dividierende Teil nicht kleiner 0 wird. So wie ich die Angabe jedenfalls verstanden habe.

[mm] $\Leftrightarrow \frac{1-|\Sigma|^{-m}}{1-|\Sigma|^{-1}} \leq [/mm] 2 = [mm] \Theta(n)$ [/mm]

Allerdings weiß ich nun an dieser Stelle nicht mehr weiter, weil ich nicht weiß, wie ich nun mit [mm] $1-|\Sigma|^{-1}$ [/mm] im Zähler des Bruches umgehen soll... Ich mein da ist ja ein Alphabet gegeben und keine algebraische Variable!


Könnt ihr mir helfen?

        
Bezug
Laufzeitkomplexität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 13.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Laufzeitkomplexität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:36 Mo 18.06.2012
Autor: felixf

Moin!

> Zeigen Sie, dass der Algorithmus NaiveSearch im Average
> Case Laufzeit [mm]\Theta(n)[/mm] hat. Nehmen
>  Sie hierzu an, dass sowohl der Text der Länge n als auch
> das Muster der Länge m zufällig
>  und gleichverteilt aus einem Alphabet mit [mm]|\Sigma| \geq 2[/mm]
> Buchstaben gewählt werden. Die Aussage
>  folgt sofort, wenn Sie zeigen, dass die erwartete Anzahl
> an Buchstaben-Vergleichen durch
>  folgende Formel gegeben ist:
>  
>
> [mm](n-m+1) \cdot \frac{1-|\Sigma|^{-m}}{1-|\Sigma|^{-1}} \leq 2(n-m+1) = \Theta(n)[/mm]
>  
>
> Hi Leute!
>  
> Wie die Aufgabe sagt, soll ich ja durch Umformung dieses
> Terms die gegebene Laufzeitkomplexität einer naiven Suche
> verifizieren. Ich hab dann mal soweit es mir möglich
> umgeformt:
>  
> [mm](n-m+1) \cdot \frac{1-|\Sigma|^{-m}}{1-|\Sigma|^{-1}} \leq 2(n-m+1) = \Theta(n)[/mm]
>  
> An dieser Stelle bringe [mm](n-m+1)[/mm] auf die andere Seite. Ich
> denke man muss Ungleichheitszeichen nicht drehen, da der zu

Du hast hier etwas falsch verstanden!

Du sollst zeigen, dass die erwartete Anzahl an Buchstaben-Vergleichen durch den Ausdruck $(n-m+1) [mm] \cdot \frac{1-|\Sigma|^{-m}}{1-|\Sigma|^{-1}}$ [/mm] gegeben ist.

Dieser wird dann in der Aufgabenstellung abgeschaetzt, um zu zeigen, dass dieser in $O(n)$ liegt -- was dir die eine Haelfte des Endresultats der Aufgabe liefert.

Um das zu bekommen musst du jedoch erstmal den Ausdruck beweisen. Die Abschaetzung ist ein sehr einfacher Schritt im Vergleich dazu.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de