www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Laurententwicklung
Laurententwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurententwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Mo 01.01.2007
Autor: sonnenblumale

Aufgabe
Entwickeln Sie die Funktion f(z) = [mm] \bruch{4z-z²}{(z²-4)(z+1)} [/mm] in dem Kreisring [mm] A_{0,1}(-1) [/mm] in eine Laurentreihe.

Hi Leutz!

Bin gerade etwas verwirrt bei der Aufgabe.

Die Pole der Funktion befinden sich in -1, -2, 2. Dh, mit diesem Kreisring entwickle ich im Mittelpunkt -1 (1. Pol) und die restlichen Pole befinden sich am Rand.

Bis jetzt habe ich zuerst die Funktion in 3 Terme partialbruchzerlegt, sodass ich die Pole herauskristallisiert habe:
f(z) = [mm] -\bruch{3}{z+2} [/mm] + 1/3 * [mm] \bruch{1}{z-2} [/mm] + 5/3* [mm] \bruch{1}{z+1} [/mm]

Für -2, 2 ist die Laurententwicklung gleich der Taylorentwicklung. Aber was mache ich mit -1.  Unsere Idee war immer die Verwendung der geometrischen Reihe. Aber ich weiß nicht wie ich [mm] \bruch{1}{z+1} [/mm] in eine geometrische Reihe verwandeln soll bzw. ob ich das überhaupt brauche???? Wenn nein, wieso?

Viele Dank & lg

sonnenblumale

        
Bezug
Laurententwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mo 01.01.2007
Autor: moudi


> Entwickeln Sie die Funktion f(z) =
> [mm]\bruch{4z-z²}{(z²-4)(z+1)}[/mm] in dem Kreisring [mm]A_{0,1}(-1)[/mm] in
> eine Laurentreihe.
>  Hi Leutz!

Hallo sonnenblumale

>  
> Bin gerade etwas verwirrt bei der Aufgabe.
>  
> Die Pole der Funktion befinden sich in -1, -2, 2. Dh, mit
> diesem Kreisring entwickle ich im Mittelpunkt -1 (1. Pol)
> und die restlichen Pole befinden sich am Rand.
>
> Bis jetzt habe ich zuerst die Funktion in 3 Terme
> partialbruchzerlegt, sodass ich die Pole
> herauskristallisiert habe:
>  [mm]f(z) = -\bruch{3}{z+2} + 1/3 * \bruch{1}{z-2} + 5/3* \bruch{1}{z+1}[/mm]

[ok]

>  
> Für -2, 2 ist die Laurententwicklung gleich der
> Taylorentwicklung. Aber was mache ich mit -1.  Unsere Idee
> war immer die Verwendung der geometrischen Reihe. Aber ich
> weiß nicht wie ich [mm]\bruch{1}{z+1}[/mm] in eine geometrische
> Reihe verwandeln soll bzw. ob ich das überhaupt brauche????

Nein, dieser Term ist der "-1" Koeffizient der Laurentreihenentwicklung (i.e. [mm] $a_{-1}=5/3$) [/mm]

Die restlichen Terme [mm] ($\bruch{-3}{z+2} [/mm] + 1/3  [mm] \bruch{1}{z-2}$) [/mm] musst du, da sie bei -1  keine Pole besitzen, als Taylorreihe an der Stelle -1 entwickeln. Das geht am besten, indem du sie als geometrische Reihen schreibst.

[mm] $\frac13 \frac{1}{z-2}=\frac13 \frac{1}{(z+1)-3}=\frac13 \frac{1/3}{(z+1)/3-1}=-\frac19 \frac{1}{1-(z+1)/3}=$ [/mm]

[mm] $=-\frac19\frac{1}{1-x}=-\frac19 (1+x+x^2+x^3+\dots)$, [/mm] wobei $x=(z+1)/3$

$-3 [mm] \frac{1}{z+2}=-3 \frac{1}{(z+1)+1}=-3\frac{1}{1+(z+1)}=$ [/mm]

[mm] $=-3\frac{1}{1+x}=-3(1-x+x^2-x^3+\dots)$, [/mm] wobei $x=(z+1)$

mfG Moudi

> Wenn nein, wieso?
>  
> Viele Dank & lg
>  
> sonnenblumale

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de