www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Laurententwicklung
Laurententwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laurententwicklung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:43 Do 23.06.2005
Autor: Nimlothiel

Hallo!

Ich habe Probleme die Taylorreihe zur Funktion zu finden, aber erstmal die Aufgabe:
Geben Sie die Laurententwicklung der Funktion
f(z)=1/( [mm] z^{3}+2z) [/mm]
bei  [mm] z_{0}=0, [/mm] deren Hauptteil und den Konvergenzbereich der Reihe an.

So, ich habe zuerst die Funktion vereinfacht: 1/z*1/( [mm] z^{2}+2). [/mm]
1/z ist Pol erster Ordnung, der zweite Teil der Funktion ist holomorph, d.h. ich muss eine Taylorreihe entwickeln um den Punkt 0 mit der holomorphen Funktion. Folgende Taylorkoeffizienten, besser gesagt die Ableitungen habe ich ermittelt.
[mm] g(z)=1/(z^{2}+2) [/mm]
g'(z)=-2z/( [mm] (z^{2}+2)^{2}) [/mm]
Die nächste Ableitung ist recht kompliziert schnell hier einzutippen, deswegen lass ich es lieber.
Ich sehe keine Regelmäßigkeit bei der Taylorreihe. Habe ich evtl. die Ableitungen falsch oder etwas anderes?
Diese holomorphe Funktion kann man auch nicht umformen(meiner Meinung nach) in eine geometrische, oder harmonische Reihe.
Nur wenn ich die Taylorreihe habe, komme ich bei der Aufgabe weiter,
Ich hoffe jemand hilft mir. Danke dafür im Voraus.

        
Bezug
Laurententwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:08 Fr 24.06.2005
Autor: Stefan

Hallo!

Also, als erstes musst du einmal eine Partialbruchzerlegung machen.

Bestimme $A$, $B$, $C$ mit

[mm] $\frac{1}{z^3+2z} [/mm] = [mm] \frac{A}{z} [/mm] + [mm] \frac{B}{z+i\sqrt{2}} [/mm] + [mm] \frac{C}{z-i\sqrt{2}}$. [/mm]

Jetzt die beiden hinteren Teile nach Kürzen mit [mm] $i\sqrt{2}$ [/mm] bzw. [mm] $-i\sqrt{2}$ [/mm] in eine geometrische Reihe verwandeln.

Schau dich mal im Uni-Funktionentheorie-Forum in Ruhe um; du siehst dort ganz viele durchgerechnete Beispiele, die so ähnlich gehen.

Anschließend kannst du dich dann ja gerne mit einer eigenen Rechnung mal melden!

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de